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Abstract – Fish stocking is a ubiquitous management measure in freshwater fisheries but it can induce
important ecological impacts on communities and recipient ecosystems. Habitat enhancement might limit
the ecological impacts of fish stocking by directly supporting biodiversity and helping to maintain
ecosystem functioning. In the present, we used a mesocosm experiment to assess whether habitat
enhancement, through the addition of coarse woody habitat (CWH) in the form of thin branches bundled or
within an iron cage, can limit the impact of stocking of a predatory fish, juvenile largemouth bass
Micropterus nigricans, on prey communities and ecosystem functioning. Results demonstrated that, prior to
stocking, there was overall no significant effect of habitat enhancement on zooplankton communities and a
strong effect on benthic macroinvertebrate communities that was associated with a decrease in the
decomposition rate of organic matter in mesocosms containing caged-CWH.We also found that the stocking
of juvenile largemouth bass significantly affected the structure of zooplankton communities while we did
not observe significant effects on macroinvertebrate communities and ecosystem functioning. This effect on
zooplankton community structure was compensated by habitat enhancement, notably when using caged-
CWH. This study showed that habitat enhancement alone may not be sufficient to compensate the potential
effects of predatory fish stocking, and that the choice of materials used to enhance habitats is fundamental in
driving the efficiency.

Keywords: Ecosystem-based management / species-oriented management / Micropterus nigricans /
coarse woody habitat / freshwater fisheries management
1 Introduction

Stocking programs are primarily designed to enhance fish
stocks by releasing hatchery-reared or wild-borne individuals
(Lorenzen et al., 2012; Sass et al., 2017) to optimize the
angling experience (Cowx, 1994). In addition, to satisfy catch-
challenge motivations of anglers, they often involve the release
of fish species, especially non-native predators, which
represent a fishing challenge, but are also known to affect
recipient communities and ecosystems (Eby et al., 2006;
Rudman et al., 2016). In fact, the stocking of predatory fish can
result in a trophic cascade due to increased top-down control
(Eby et al., 2006), and lead to altered trophic linkages through
changes in prey community structure (Tiberti et al., 2014) that
can subsequently affect ecosystem functions such as nutrient
cycling and primary production (Schindler et al., 2001).
Furthermore, individuals used in stocking programs often
come from fish farms and are therefore reared in conditions
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that are very different from the ecosystems where they are
released. These differences have multiple consequences on
stocked fish (Milla et al., 2021), including change in foraging
behavior of predatory fish fed with artificial diets in hatchery
(Huntingford, 2004; Milla et al., 2021). Thus, stocking of
predatory fish species, and especially hatchery-reared individ-
uals, can be a possible threat to the long-term sustainability of
freshwater biodiversity and ecosystems. However, stocking
can also contribute to the recovery of fish stocks and provide
benefits for fisheries (Lorenzen et al., 2012; Amoroso et al.,
2017; Johnston et al., 2018), but this depends on the ecological
characteristics of the recipient ecosystem, which is rarely
considered (Claussen and Philipp, 2023).

Habitat enhancement measures that aim to improve fish
stocks have received less consideration by freshwater
managers than stocking (Lorenzen, 2014; Schindler and
Hilborn, 2015; Sass et al., 2017). Nearshore habitats are often
impacted by recreational activities or intentionally removed by
fishery managers (Jennings et al., 2003), although it can affect
the growth and cause a decline of fish populations (Sass et al.,
2006). Increased investment in habitat enhancement and
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protection could have beneficial effects for the ecosystems, by
increasing its carryingcapacity, and for thefisheries, by improving
the productivity of exploited fish stocks (Radinger et al., 2023)
through increasednatural recruitment in somepopularfish species
(Roni et al., 2008; Nilsson et al., 2014). In fact, structured habitat
are particularly important for freshwater fishes because they can
be used for foraging and predator avoidance (Sass et al., 2023).
Compared to stocking, habitat enhancement appears to be a more
integrative and sustainable management, because adding habitats
candirectly supportbiodiversityandcontributebyextension to the
ecosystemfunctioningandservices (Dobsonetal., 2006;Harrison
et al., 2014;Radingeret al., 2023). In lake, littoral habitats such as
coarse woody habitat (CWH), including for example logs, root
wads and stumps, provide key habitats not only for fish, but also
for invertebrates or periphyton, and affect a wide range of
ecological functions (Harmon et al., 2004), such as ecosystem
productivity and nutrient cycling (Czarnecka, 2016). Further-
more, the addition of this type of physical habitat structure
represents one of the most common methods used to restore
freshwater habitats (Cooke et al., 2023), and it is especially
beneficial in ecosystem lacking habitats (Sass et al., 2023). The
deployment of physical habitat structures is not limited to the
addition of woody habitats, and many structures made from
artificialmaterials havealsobeenused, particularly in recreational
fisheries (Boldingetal., 2004).Suchstructurearealso subjected to
debate because of a potential release of contaminants (e.g., with
plastic habitats Cooke et al., 2023). Thus, enhancing the quality
and quantity of littoral habitats might limit some of the negative
effects of predatory fish stocking by providing refuge to prey
communityandmaintainingsomeimportantecosystemfunctions,
but this remains to be tested.

The main objective of the present study was to determine
whether habitat enhancement can limit the ecological impacts
of predatory fish stocking. To study the effect of stocking, we
used an experimental mesocosm approach and hatchery-reared
juvenile largemouth bass Micropterus nigricans, a predator
and a popular game fish for anglers (Donaldson et al., 2011), as
a model species. We assessed the ecological consequences of
two different habitat enhancements, a habitat made of natural
materials and a habitat made of natural and artificial materials
(i.e., CWH and CWH within an iron cage), prior and after fish
stocking. First, we predicted that stocking will have a strong
impact on the composition of prey communities through
predation, and consequently modify ecosystem functioning.
Then, we predicted that habitat enhancement will limit the
ecological impacts of stocking by supporting prey communi-
ties (i.e., refuge from predation and additional physical
habitat), thereby maintaining some important ecosystem
functions. Finally, we have also predicted that the effect of
habitat enhancement will differ depending on the materials
used and the complexity of the artificial structure.

2 Materials and methods

2.1 Model system

We used the stocking of non-native largemouth bass in
gravel pit lakes in southwestern France as a case study for this
experiment. In many European countries, gravel pit lakes are
becoming more and more common in the landscape and
represent valuable ecosystems for recreational fisheries
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(Matern et al., 2019; Meyerhoff et al., 2019), but the
availability of structured littoral habitats for fish is often
limited. In the study area, stocking is an important driver of
fish community structure in gravel pit lakes (Zhao et al.,
2016; Gimenez et al., 2023; Garcia et al., 2023). Largemouth
bass is one of the most notorious and highly introduced
species in freshwater ecosystems (Brown et al., 2009;
Donaldson et al., 2011) and its introduction can affect
recipient community through trophic cascade (Drenner et al.,
2002; Jackson, 2002). Largemouth bass is well distributed in
the study area, targeted by many recreational anglers and
local angling authorities have recently implemented a
regulation whereby catch-and-release angling is mandatory
for this non-native species. The littoral habitat is particularly
important for the all life stages of the species (Brown et al.,
2009), but gravel pit lakes are usually characterized by steep
slopes and higher littoral depth with a lack of macrophytes
and deadwood compared to natural lakes (Emmrich et al.,
2014). Thus, littoral habitat enhancement could be particu-
larly efficient in such ecosystems (Radinger et al., 2023), and
this is particularly true for this species.
2.2 Experimental design

We used an experimental approach (24 outdoors meso-
cosms, circular cattle tanks, 550 L) based on four treatments: i)
nor fish stocking or habitat enhancement (hereafter “no
stocking”), ii) fish stocking and no habitat enhancement
(“stocking only”), iii) fish stocking and habitat enhancement
with a coarse woody habitat (CWH) (“stocking and CWH”)
and iv) fish stocking and habitat enhancement with a caged-
CWH (“stocking and caged-CWH”). Each treatment was
replicated six times and we used a block design with six blocks
with each block containing the four treatments (Závorka et al.,
2020) (Fig. S1). CWH habitat enhancement consisted in a
brush pile consisting of 2 kg of deadwood (thin branches< 1.5
cm diameter of downy oak Quercus pubescens) grouped into
circular bundles (40 � 20 � 20 cm) (Fig. S2a). Caged-CWH
habitat enhancement consisted in the same bundle of
deadwood that was placed within an iron cage (40 � 40 � 30
cm, Biohut

®

, ECOCEAN, Montpellier, France) (see details of
the structure in Fig. S2b). Specifically, the cage was made of
iron coated with a zinc-aluminum alloy. This device is deployed
to restore nurseries in marine ecosystems and was used here to
increase habitat complexity and verticality compared to CWH.

On April 29, 2021, 5 cm of gravel and 500 L of unfiltered
water from a nearby gravel pit lake were added to each
mesocosm. On June 10, 2021, each mesocosm was inoculated
with phytoplankton and zooplankton collected from three
gravel pit lakes (Téoula, Soulance and Lamartine lakes)
located in the floodplain of the Garonne river (Haute-Garonne,
France) (Zhao et al., 2016). Phytoplankton and zooplankton
inoculum were collected using nets with a mesh size of 10 and
50 mm, respectively. From May 18, 2021 to July 15, 2021,
several additions ofmultiplemacroinvertebrate taxaweremade.
In each mesocosm, 12 pond snails (immature Lymnaea
stagnalis) reared in aquarium and two mesh bags containing
5 g of leaves of black poplarPopulus nigra that have been placed
in a nearby gravel pit lake for 21 days were added to each
mesocosm. On June 28 and July 15, 2021, two additional
f 11
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inoculums of macroinvertebrates collected in the Ariège river
using a dip net (500 mm mesh size) were added.

The experiment was composed of two periods. The first
period (before stocking) started on November 22, 2021, when
habitat enhancements were installed and lasted 34 weeks. The
second period (after stocking) started on July 20, 2022 with
fish stocking and ended on September 6, 2022 (duration: eight
weeks). From July 4, 2022 until the end of the experiment, nets
(1.5 mm mesh size) were placed on the mesocosms to prevent
fish escapees and potential predations. Summer 2022 was
particularly warm and dry with multiple heat waves.
Therefore, water was added to all mesocosms during the
warmest period to compensate evaporation and an air bubbling
system was placed in each mesocosm to avoid hypoxia.

2.3 Fish stocking

For all mesocosms with stocking, five hatchery-reared
young-of-the-year (YOY) largemouth bass were introduced
(ntotal = 90 individuals) on July 20, 2022. In the hatchery, they
were fed daily with pelletized food. To avoid handling stress,
the total mass of largemouth bass introduced in each mesocosm
was measured as a batch (mean = 33.6 g ± 2.4 SD) and did not
differ significantly between treatments (LMM, x2(2,17) = 0.11,
p = 0.95, Fig. S3).

2.4 Mesocosm monitoring and sampling

On September 6, 2022, fish were collected from each
mesocosm and subsequently euthanized individually using an
overdose of anesthetic (benzocaine, 25 mg.L�1). The number
of fish in each mesocosm was counted and individual size
(nearest mm) and mass (nearest 0.01 g) were measured. Then,
the survival rate was calculated based on the number of fish
introduced and the number of fish found alive at the end of the
experiment. We also calculated the scaled-mass index as an
index of body condition following Peig and Green (2009):

Scaled�mass indexðSMIÞ ¼ W i
L0
Li

� �bSMA

where Wi and Li are the weight and length of each fish,
respectively. In our case, L0 was the arithmetic mean of the
length of all fish measured. To compute the bSMA, we applied
an SMA regression (using the ‘lmodel2’ function in R) to log-
transformed weight and length values to determine the slope of
the fitted line.

Regarding prey communities, zooplankton was sampled by
filtering 20 and 40 L of water using a 80 mm mesh sieve,
respectively for each period (i.e., before stocking on July 19,
2022, and after stocking on September 5, 2022). Samples were
stored in 96% ethanol and subsequently filtered again through
a 160 mm mesh sieve prior to counting. Zooplankton was
identified to the lowest taxonomic level using a binocular
magnifier (Leica MZ7.5 StereoZoom Microscope). A total of
eight taxa (Chaoboridae, Cyclopoïda, Calanoïda, Ceriodaph-
nia, Simocephalus, Daphnia, Bosminidae, Chydoridae and
Nauplii) were identified and counted. We then calculated
zooplankton richness (number of taxa) and density (ind.L�1).
Benthic macroinvertebrates were sampled using three plastic
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trays buried in the substrate installed in the mesocosms on June
10 and July 22, 2022, respectively. Macroinvertebrates were
collected using a sieve (before stocking on July 19, 2022, and
after stocking on September 5, 2022) and stored in 96%
ethanol before laboratory analysis. Macroinvertebrates inhab-
iting CWH and caged-CWH were also collected, but only at
the end of the experiment (September 6, 2022) to avoid overly
destructive sampling before fish introduction. Macroinverte-
brates were then identified to the lowest taxonomic level
(mainly Family) using a binocular magnifier (Leica MZ7.5
StereoZoomMicroscope). A total of 16macroinvertebrate taxa
(Lymnaea, Physa, Ancylidae, Asellidae, Gammaridae, Planar-
ian, Chironomidae, Culicidae, Dytiscidae, Hydrachnidia,
Annelida, Ceratopogonidae, Baetidae, Corixidae, Corbicula,
Mesovellidae) were identified and counted. We then calculated
macroinvertebrate richness (number of taxa) and density (ind.
mesocosm�1).

Regarding ecosystem functioning, parameters were mea-
sured the day before community sampling to limit potential
perturbations. Pelagic primary production was assessed by
measuring total chlorophyll-a concentration (mg chl-a.L�1)
using a portable fluorometer (AlgaeTorch; BBE moldaenke
GmbH) before fish stocking. After stocking, chlorophyll-a
concentration (mg chl-a.L�1) was quantified by filtering water
samples (250 mL) due to high concentration in some
mesocosms. Benthic primary production was assessed by
measuring chlorophyll-a concentration (mg chl-a.cm�2) on
three ceramic tiles (20 � 10 cm) using a portable fluorometer
(BenthoTorch; BBE moldaenke GmbH; Kahlert and McKie,
2014). The decomposition rate of leaf litter was quantified by
measuring breakdown of 3 g (± 0.02 g) of air-dried black
poplar leaves (details in Alp et al., 2016; Závorka et al., 2020)
placed into mesocosms. Leaf decomposition corresponded to
the decomposition rate for each tank, which was calculated as
follows (Lecerf et al., 2005):

k ¼
�ln Mf

Mi

T

where Mf is final andMi is initial oven-dried mass of leaf litter,
T the duration of leaf exposure in mesocosms (39 and 45 days
for each period, respectively).
2.5 Statistical analyses

Overall, a similar general approach was used to test the
effects of treatment on each response variables. We used mixed
effects models (LMM and GLMM depending on data
distribution, see details in Tab. S1) using treatment as a fixed
variable and experimental block as a random variable. The
response variables used in the models were those measured
directly during the sampling campaign and community
identification, except for community structures, where non-
metric multidimensional scaling (nMDS with untransformed
densities of each taxa and Bray-Curtis index; Kruskal, 1964)
were performed and the first two axes used as response
variables (Tab. S1). When response variables were significant,
pairwise comparisons were subsequently used to identify
differences between treatments (Tukey post-hoc test). All
analyses were performed with R v. 4.2.2 (R Core Team, 2022)
f 11



Fig. 1. Effects of management practices before stocking on community structure quantified using (a-b) a non-metric multidimensional scaling
(nMDS) analysis and analyzed along the (c-d) first and (e-f) second axes. Zooplankton communities are represented on the left side of the panel
and macroinvertebrate communities on the right side. Different letters indicate significant difference between treatments (Tukey post hoc test,
p < 0.05).
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using lme4 v. 1.1-32 (Bates et al., 2015) for LMM and GLMM,
emmeans v.1.8.5 (Lenth et al., 2023) for pairwise comparisons,
vegan v. 2.6-4 (Oksanen et al., 2022) for nMDS.

3 Results

3.1 Ecological effects before fish stocking

Zooplankton communities were dominated by Cyclopoïda
(mean = 128.2 ind.L�1 ± 316.6 SD), Bosminidae (mean =
114.2 ind.L�1 ± 391.5 SD) and Ceriodaphnia (mean = 83.3 ind.
L�1 ± 303.0 SD) (Fig. S4a). There were significant differences
between treatments in the richness and density (LMM, x2(3,23)
= 10.52, p < 0.05 and x2(3,23) = 29.78, p < 0.0001,
respectively), with a significantly lower richness in stocking
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and caged-CWH treatment compared with stocking only
treatment (Tukey post hoc test, p < 0.05, Fig. S5a). Density
was significantly lower in caged-CWH treatment compared to
no stocking and, stocking and CWH treatments (Tukey post
hoc test, p < 0.01, Fig. S5b). There were no significant
difference between treatments in zooplankton community
structure (LMM, x2(3,23) = 1.62, p = 0.65 and x2(3,23) = 0.43, p =
0.93, for the two axes, respectively, Figs. 1a, 1c, and 1e).

Macroinvertebrate communities were largely dominated
by Asellidae (mean = 3376.7 ind.mesocosm�1 ± 4765.7 SD),
followed by Chironomidae (mean = 274.2 ind.mesocosm�1 ±
786.5 SD) and Annelida (mean = 250.4 ind.mesocosm�1 ±
1182.6 SD) (Fig. S6a). Richness and density differed
significantly between treatments (LMM, x2(3,23) = 12.57,
p< 0.01 and x2(3,23) = 14.14, p< 0.01, respectively), and both
f 11



Fig. 2. Ecological effects of treatments before stocking on (a) pelagic primary production, (b) benthic primary production and (c) decomposition
rate. Different letters indicate significant difference between treatments (Tukey post-hoc test, p < 0.05).
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were significantly lower in the stocking and caged-CWH
compared with no stocking and stocking only treatments
(Tukey post hoc test, p < 0.05, Fig. S7 a-b). Community
structure significantly differed between treatments (Fig. 1b)
along the two axis (LMM, x2(3,23) = 11.82, p< 0.01 and x2(3,23)
= 28.37, p< 0.0001, respectively for the two axes, Fig. 1d and
f). Along the first axis, stocking only and stocking and CWH
treatments differed significantly (Tukey post hoc test, p< 0.05,
Fig. 1d), and along the second axis, stocking and caged-CWH
treatment differed significantly with treatments without habitat
enhancement (Tukey post hoc test, p < 0.01, Fig. 1f).

Treatments did not differ significantly for the pelagic and
benthic primary production (LMM, x2(3,23) = 5.64, p = 0.13 and
x2(3,23) = 3.54, p = 0.32, respectively, Fig. 2a-b). However,
decomposition of organic matter differed significantly between
treatments (LMM, x2(3,23) = 15.37, p< 0.01), with a significant
lower decomposition rate in the stocking and caged-CWH
treatment compared with the no stocking treatment (Tukey
post-hoc test, p < 0.01, Fig. 2c).
3.2 Ecological effects after fish stocking

At the end of the experiment, there was a significant
difference in scaled-mass index between treatments (GLMM,
x2(2,70) = 10.64, p < 0.01, Fig. 3a), with fish displaying
significantly lower scaled-mass index in mesocosms with
caged-CWH compared to stocking only (Tukey post-hoc test,
p< 0.01, Fig. 3a). The survival rate did not differ significantly
between treatments (LMM, x2(2,16) = 3.56, p = 0.17, Fig. 3b).
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Zooplankton communities were largely dominated by
Bosminidae (mean = 147.7 ind.L�1 ± 267.6 SD), followed by
Cyclopoïda (mean = 36.5 ind.L�1 ± 76.2 SD) and
Ceriodaphnia (mean = 21.9 ind.L�1 ± 66.5 SD) (Fig. S4b).
There were no significant difference between treatments in
zooplankton richness and density (LMM, x2(3,23) = 6.15, p =
0.10 and x2(3,23) = 5.59, p = 0.15, respectively, Fig. S5 c-d).
Community structure significantly differed between treatments
(Fig. 4a) along the first axis of the nMDS, (LMM, x2(3,23) =
22.16, p< 0.0001, Fig. 4c), with no stocking and stocking and
caged-CWH treatments significantly different with stocking
only treatment (Tukey post hoc test, p < 0.01 and p < 0.05,
respectively, Fig. 4c). There was no significant difference
between treatment along the second axis of the nMDS (LMM,
x2(3,23) = 3.19, p = 0.36, Fig. 4e).

Macroinvertebrate communities were largely dominated
by Asellidae (mean = 2022.1 ind.mesocosm�1 ± 2896.5 SD),
followed by Annelida (mean = 479.2 ind.mesocosm�1 ±
1382.8 SD) and Physa (mean = 52.9 ind.mesocosm�1 ± 178.5
SD) (Fig. S6b). Richness differed significantly between
treatments (LMM, x2(3,23) = 49, p < 0.0001), with a
significantly lower richness in the stocking and caged-CWH
treatment compared to all other treatments (Tukey post hoc
test, p < 0.01, Fig. S7c). However, density did not differ
significantly between treatments (LMM, x2(3,23) = 7.20, p =
0.07, Fig. S7d). Community structure significantly differed
between treatments (Fig. 4b), but only on the first axis of the
nMDS (LMM, x2(3,20) = 64.58, p < 0.0001 and x2(3,20) = 2.40,
p = 0.49, respectively for the two axes, Fig. 4d and f), with the
stocking and caged-CWH treatment being significantly
f 11



Fig. 3. Treatment effects on (a) scaled-mass index and (b) survival rate of juvenile largemouth bass Micropterus nigricans, at the end of the
experiment. Different letters indicate significant difference between treatments (Tukey post-hoc test, p < 0.05).

Fig. 4. Effectsofmanagementpracticesafter stockingoncommunitystructurequantifiedusing(a-b)anon-metricmultidimensional scaling (nMDS)
analysis and analyzed along the (c-d) first and (e-f) second axes. Zooplankton communities are represented on the left side of the panel and
macroinvertebrate communities on the right side.Different letters indicate significant difference between treatments (Tukeypost hoc test, p< 0.05).
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Fig. 5. Macroinvertebrate community structure within the added habitats after stocking quantified using (a) a non-metric multidimensional
scaling (nMDS) analysis and analyzed with the (b) first and (c) second axes. Different letters indicate significant difference between treatments
(ANOVA, p < 0.05).
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different from all other treatments (Tukey post hoc test,
p < 0.001, Fig. 4d).

Macroinvertebrate communities in habitat were largely
dominated by Physa (mean = 171.7 ind.hab�1 ± 370.1 SD) and
Asellidae (mean = 59.5 ind.hab�1 ± 130.1 SD) (Fig. S8). For
the two treatments with habitat enhancement action, a large
proportion of the macroinvertebrates sampled were found
within the habitat, despite a high variability between samples
(for stocking and CWH treatment: mean = 82.4 ± 19.4% and
ranging from 45.7 to 96.9%; for stocking and caged-CWH
treatment: mean = 50.2 ± 47.8% and ranging from 6.0 to
100%). No significant difference in richness was found
between the two habitat devices (LMM, x2(1,11) = 1.71,
p = 0.19, Fig. S9a), but density of macroinvertebrates in caged-
CWH was lower compared to density in CWH (LMM, x2(1,11)
= 8.96, p< 0.01, Fig. S9b). There was no significant difference
in macroinvertebrate community structure in the added
habitats (Fig. 5a) along the first axis (LMM, x2(1,11) = 0.13,
p = 0.72, Fig. 5b) while a significant difference was found
between CWH and caged-CWH along the second axis (LMM,
x2(1,11) = 24.92, p < 0.0001, Fig. 5c).

Regarding ecosystem functioning, pelagic primary produc-
tion differed significantly between treatments (LMM, x2(3,23) =
52.78, p< 0.0001) with higher values observed in stocking and
caged-CWH than in other treatments (Tukey post-hoc test,
p < 0.001, Fig. 6a). Benthic primary production did not differ
significantly between treatments (LMM,x2(3,23) = 0.59,p=0.90,
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Fig. 6b). The decomposition rate of organic matter differed
significantly between treatments (LMM, x2(3,23) = 14.70,
p < 0.01), with a significant lower decomposition rate in the
stocking andcaged-CWHtreatment compared to theno stocking
treatment (Tukey post-hoc test, p < 0.01, Fig. 6c).

4 Discussion

Using an experimental approach, this study aimed to assess
whether habitat enhancement, as a management practice, can
help limiting the ecological impacts caused by the introduction
of a non-native predatory species. First, we found that, prior to
fish stocking, habitat enhancements had a contrasted effect on
prey communities in mesocosms with coarse woody habitat
(CWH) having no significant effect on zooplankton commu-
nities but a significant effect on macroinvertebrate community
structure while caged-CWH had a significant effect on richness
and density of zooplankton and on the richness, density and
structure of benthic macroinvertebrate communities. In
addition, the presence of caged-CWH was associated with a
decrease in the decomposition rate of organic matter. We then
found that stocked young-of-the-year largemouth bass induced
significant changes in the structure of zooplankton communi-
ties, while macroinvertebrate communities and ecosystem
functioning were not significantly impacted by stocking. We
then found that the impacts of stocking on zooplankton
community structure were compensated by habitat enhance-
f 11



Fig. 6. Ecological effects of management practices after stocking on (a) pelagic primary production, (b) benthic primary production and
(c) decomposition rate. Different letters indicate significant difference between treatments (Tukey post-hoc test, p < 0.05).
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ment. However, we also found that habitat enhancement with
caged-CWH had a significant impact on fish body condition.

While predatory fish stocking has been reported to induce
important trophic cascade (Eby et al., 2006; Rudman et al.,
2016), we found a significant effect of stocking on zooplankton
community structure but limited cascading effect on ecosystem
functioning. Specifically, in presence of largemouth bass, we
found that the density of some important zooplankton taxa
strongly decreased (e.g., Daphnia and Chaoboridae), while the
density of some small-bodied cladocerans (e.g., Bosminidae)
increased. Such changes in the zooplankton community have
already been observed in lakes after largemouth bass
introduction (Baca and Drenner, 1995). By consuming large
zooplankton taxa, largemouth bass have likely enabled smaller
zooplankton to dominate. Surprisingly, we observed an
increased phytoplankton with caged-CWH while zooplankton
community did not differ from the control without stocking.
This might be explained by the fact that food webs in this
treatment were already weakened before stocking, with a
different community structure and, in particular, a lower
richness and density of organisms.

Regarding the benthic habitat, stocking of young-of-the-
year bass did not affect, in our experiment, macroinvertebrate
community, although they represent potential prey for them
(Post, 2003; Brown et al., 2009). The introduction of predatory
game fish into fishless lakes has been reported to strongly
affect benthic macroinvertebrates (Knapp et al., 2005) and
particularly largemouth bass (Jackson, 2002). The lack of
effects measured here might be caused by the fact that
largemouth bass used in this experiment were reared in a
hatchery and fed with pelletized food prior to their introduction
Page 8 o
in the mesocosms. They may have exhibited different feeding
behavior due to rearing conditions (Huntingford, 2004), such
as surface feeding with limiting experience in consuming
benthic prey. This could also explain why we only observed a
consumption effect of largemouth bass on zooplankton without
a cascading top-down effect on primary producers.

Contrary to a previous work conducted in a boreal lake
(Theis et al., 2022), habitat enhancement did not increase
macroinvertebrate productivity in the present study. This result
is surprising as the presence of CWH should have provided a
prime habitat for benthic macroinvertebrates and a potential
refuge from predators (Everett and Ruiz, 1993; Smokorowski
et al., 2006; Czarnecka, 2016). A previous study in stream
(Bond et al., 2006) showed a very rapid colonization of
habitats by macroinvertebrates, within a month, but followed
by a drastic drop in abundance and richness after several
months. When adding an iron cage with the idea to increase
habitat complexity, deleterious effects on the invertebrate
community were observed, contrary to previous studies
(Schmude et al., 1998; Taniguchi et al., 2003). We found
that the presence of cage increased water conductivity
(Fig. S10) and this might explain the effect on communities
compared to CWH without cage (Cormier et al., 2013). The
changes observed in zooplankton diversity and density can
also be explained by this change in water quality (Yan et al.,
1996). Macroinvertebrate communities found in the two added
habitats differed in terms of diversity and structure, indicating
that the choice of materials is crucial. We also observed that
habitat enhancement did not have positive effects on fish body
condition, and we even found significantly lower body mass in
fish in the treatment with caged-CWH. This difference can be
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explained by the fact that the addition of the cage resulted in a
significant decrease in the density and richness of zooplankton,
thereby reducing the abundance of potential food resources for
YOY largemouth bass (Post, 2003; Brown et al., 2009).
Specifically, cages might release potential contaminants (e.g.,
zinc, aluminum) and previous studies have shown that metallic
pollution can affect the health and behavior of fish (Javed and
Usmani, 2019; Jacquin et al., 2020). It can also have an impact
on the structure and functioning of freshwater communities,
although its effect can be modulated by other factors such as
temperature (Van de Perre et al., 2016). Therefore, further
investigations are needed to unsure the absence of ecological
effects of the materials used for habitat enhancement (Cooke
et al., 2023).

In conclusion, our experience has provided some insights on
the capacity of habitat enhancement in potentially limiting the
ecological impacts of stocking predatory fish. We have
demonstrated that habitat enhancementcanpartially compensate
the predatory effect of fish, but that it can also alter water quality
and key ecosystem functions. Ecosystem-based management is
promising (Feng et al., 2023; Radinger et al., 2023), but remains
complex to implement, particularly in the choice of materials
used toensure a sustainableandbeneficial outcome(Cookeetal.,
2023). The effects of habitat enhancement occur over the long-
termwhereas the effects of stockingmay occur in the short term,
indicating that the impacts of stockingwith non-native predators
are difficult to reverse, despite investment in habitat enhance-
ment. This study suggests that the outputs of habitat enhance-
ment are complex, and that the use of habitat enhancement alone
might not be sufficient to compensate the rapid consequences
induced by fish stocking.
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Figure S1. Block design of the experiment with each block (n = 6) containing

each of the four treatments.

Figure S2. Additional habitats used in the experiment: (a) coarse woody

habitat (CWH) composed of a deadwood bundle (downy oak, Quercus

pubescens) and (b) caged-CWH composed of a deadwood bundle (downy oak,

Quercus pubescens) installed within an iron cage (Biohut®, ECOCEAN,

Montpellier, France).

Figure S3. Initial stocking biomass of largemouth bassMicropterus nigricans

in treatments with stocking. For all treatments, five hatchery-reared young-of-
the-year (YOY) largemouth bass were introduced in each mesocosm

(ntotal = 90 individuals). There was no significant different between treatments

in initial stocking biomass (Tukey post-hoc test, p > 0.05).

Figure S4. Density (ind.L−1) of each taxon zooplankton sampled in each

treatment (a) before and (b) after fish stocking.
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Figure S5. Effect of management practices (a-b) before and (c-d) after

fish stocking on zooplankton richness and density (ind.L−1). Different

letters indicate significant difference between treatments (Tukey post hoc test,

p < 0.05).

Figure S6. Density (ind.mesocosm−1) of sampled macroinvertebrate per

taxon and for each treatment (a) before stocking and (b) after fish
stocking.

Figure S7. Effect of management practices (a-b) before and (c-d) after fish
stocking on macroinvertebrate richness and density (ind.mesocosm−1).

Different letters indicate significant difference between treatments (Tukey

post hoc test, p < 0.05).

Figure S8. Density (ind.hab−1) of each taxon of macroinvertebrates for each

treatment with a habitat enhancement device (CWH only and caged-CWH)

after fish stocking.

Figure S9. Macroinvertebrate (a) richness and (b) density (ind.hab−1) within

the CWH and the caged-CWH. Different letters indicate significant difference
between treatments (ANOVA, p < 0.05).

Figure S10. Effects of treatments (a) before and (b) after stocking on

conductivity (µS.cm−1). Different letters indicate significant difference

between treatments (Tukey post hoc test, p < 0.05).

Tab. S1. Details on the models, transformation and distributions used for each

response variable before and after stocking.

The Supplementary Material is available at https://www.kmae-journal.

org/10.1051/kmae/2024004/olm.
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