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Abstract
Functional	traits	can	covary	to	form	“functional	syndromes.”	Describing	and	under‐
standing	functional	syndromes	is	an	important	prerequisite	for	predicting	the	effects	
of	 organisms	 on	 ecosystem	 functioning.	 At	 the	 intraspecific	 level,	 functional	 syn‐
dromes	have	recently	been	described,	but	very	little	is	known	about	their	variability	
among	populations	and—if	they	vary—what	the	ecological	and	evolutionary	drivers	of	
this	variation	are.	Here,	we	quantified	and	compared	the	variability	in	four	functional	
traits	(body	mass,	metabolic	rate,	excretion	rate,	and	boldness),	their	covariations	and	
the	subsequent	syndromes	among	thirteen	populations	of	a	common	freshwater	fish	
(the	European	minnow,	Phoxinus phoxinus).	We	then	tested	whether	functional	traits	
and	their	covariations,	as	well	as	the	subsequent	syndromes,	were	underpinned	by	
the	phylogenetic	relatedness	among	populations	(historical	effects)	or	the	local	envi‐
ronment	(i.e.,	temperature	and	predation	pressure),	and	whether	adaptive	(selection	
or	 plasticity)	 or	 nonadaptive	 (genetic	 drift)	 processes	 sustained	 among‐population	
variability.	We	found	substantial	among‐population	variability	in	functional	traits	and	
trait	covariations,	and	in	the	emerging	syndromes.	We	further	found	that	adaptive	
mechanisms	(plasticity	and/or	selection)	related	to	water	temperature	and	predation	
pressure	modulated	the	covariation	between	body	mass	and	metabolic	rate.	Other	
trait	covariations	were	more	likely	driven	by	genetic	drift,	suggesting	that	nonadap‐
tive	processes	 can	 also	 lead	 to	 substantial	 differences	 in	 trait	 covariations	 among	
populations.	Overall,	we	concluded	that	functional	syndromes	are	population‐spe‐
cific,	and	that	both	adaptive	and	nonadaptive	processes	are	shaping	functional	traits.	
Given	the	pivotal	role	of	functional	traits,	differences	in	functional	syndromes	within	
species	provide	interesting	perspectives	regarding	the	role	of	intraspecific	diversity	
for	ecosystem	functioning.
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1  | INTRODUC TION

Phenotypic	variability	measured	within	species	has	historically	been	
the	core	of	evolutionary	studies,	as	it	constitutes	the	visible	outcome	
of	evolutionary	processes	(Darwin,	1859;	Roff,	1992;	Stearns,	1992).	
It	 is	 now	 increasingly	 acknowledged	 that	 intraspecific	 phenotypic	
variability	can	strongly	affect	community	structure	and	ecosystem	
functioning	(Des	Roches	et	al.,	2018;	Raffard,	Santoul,	Cucherousset,	
&	Blanchet,	2018).	In	particular,	functional	traits,	such	as	excretion	
rate,	are	extremely	important	for	understanding	and	predicting	how	
organisms	 affect	 their	 own	 biotic	 and	 abiotic	 environment	 (Díaz	
et	al.,	2013;	Violle	et	al.,	2007).	Functional	traits	display	variability	
both	within	 and	 among	 populations	 (Helsen	 et	 al.,	 2017;	 Villéger,	
Brosse,	Mouchet,	Mouillot,	&	Vanni,	2017).	For	instance,	the	nutri‐
ent	excretion	rate	(a	trait	potentially	affecting	nutrient	availability	in	
ecosystems,	Vanni,	2002)	can	vary	substantially	among	and	within	
populations	 (Evangelista,	 Lecerf,	 Britton,	 &	 Cucherousset,	 2017;	
Villéger,	Grenouillet,	Suc,	&	Brosse,	2012).	Since	functional	traits	de‐
termine	the	way	organisms	modulate	the	environment,	it	is	import‐
ant	to	investigate	the	spatial	distribution	of	these	traits	(Funk	et	al.,	
2016;	Villéger	et	al.,	2017).

Functional	 traits	 are	 highly	 variable	 across	 landscapes.	 For	 in‐
stance,	 the	metabolic	 rate	 of	 ectotherms	 is,	 on	 average,	 higher	 in	
warm	 than	 in	 cold	 environments	 (Brown,	 Gillooly,	 Allen,	 Savage,	
&	 West,	 2004;	 Hildrew,	 Raffaelli,	 &	 Edmonds‐Browns,	 2007).	
Moreover,	trait	covariations	are	also	expected	to	be	heterogeneous	
across	landscapes	(Reale	et	al.,	2010).	The	covariations	among	mul‐
tiple	 traits	have	been	referred	to	as	syndromes (Dingemanse	et	al.,	
2007).	Syndromes	have	primarily	been	investigated	for	life‐history,	
behavioral,	and	physiological	traits	(Roff,	1992;	Sih,	Bell,	&	Johnson,	
2004),	and	have	greatly	contributed	to	our	understanding	of	life‐his‐
tory	strategies	in	wild	populations	(Reale	et	al.,	2010).	In	the	mean‐
time,	 community	 ecologists	 have	 investigated	 how	 covariations	 in	
functional	traits,	measured	at	the	community	level,	can	affect	eco‐
system	functioning	(Díaz	et	al.,	2016;	Lavorel	&	Garnier,	2002).	More	
recently,	it	has	been	demonstrated	that	functional	trait	covariations	
also	 occur	within	 species,	 forming	 a	 so‐called	 functional syndrome 
(Raffard	 et	 al.,	 2017).	 Functional	 syndromes	 have	 been	 shown	 to	
exist	in	several	species	(e.g.,	Defossez,	Pellissier,	&	Rasmann,	2018;	
Raffard	et	al.,	2017),	but	the	variability	of	these	syndromes	across	
populations	and	environmental	conditions	remains	unexplored.

Functional	syndromes	are	also	expected	to	vary	among	popu‐
lations	within	a	single	species	(Peiman	&	Robinson,	2017).	Indeed,	
it	has	been	suggested	that	environmental	conditions	can	modulate	
trait	 covariations	 and	 the	 associated	 syndromes	 (Killen,	Marras,	
Metcalfe,	 McKenzie,	 &	 Domenici,	 2013).	 Notably,	 experimental	
studies	 have	 demonstrated	 that	 some	 environmental	 conditions	
can	 induce	 biological	 constraints	 (e.g.,	 energetic	 requirement)	
that	 modulate	 trait	 covariations	 (Finstad,	 Forseth,	 Ugedal,	 &	
NæSje,	 2007;	 Killen,	 Marras,	 &	 McKenzie,	 2011).	 For	 instance,	
food	availability	has	been	demonstrated	to	produce	a	covariation	
between	metabolic	rate	and	risk‐taking	behavior	in	European	sea	

bass	(Dicentrarchus labrax),	probably	because	individuals	with	high	
metabolic	rate	have	high	energetic	demands	and	should	be	more	
active	 to	 acquire	 resources	 to	 sustain	 this	 demand	 (Killen	 et	 al.,	
2011).	Variation	in	syndromes	has	also	been	reported	among	wild	
populations	living	in	heterogeneous	environments	(Dingemanse	et	
al.,	2007;	Peiman	&	Robinson,	2012;	Pruitt	et	al.,	2010;	Závorka	et	
al.,	2017).	Beyond	the	direct	effect	of	environmental	characteris‐
tics	(e.g.,	temperature,	predation)	on	syndromes,	the	evolutionary	
history	of	populations—such	as	the	past	demographic	and	coloni‐
zation	 history	 that	 often	 generates	 bottlenecks	 and	 founder	 ef‐
fects—may	also	play	an	underestimated	role	in	shaping	syndromes	
(Armbruster	&	Schwaegerle,	1996;	Peiman	&	Robinson,	2017).	For	
instance,	 populations	 can	 exhibit	 different	 syndromes	 because	
they	may	have	been	colonized	by	two	independent	lineages	having	
evolved	divergent	syndromes	in	their	past	respective	refuge	(“the	
ghost	of	colonization	past”).	This	past	evolutionary	legacy	is	likely	
to	 be	 identified	 at	 the	 level	 of	 the	 genetic	 lineages;	 two	 closely	
related	populations	being	more	likely	to	display	similar	syndromes	
than	 two	 distantly	 related	 populations.	 This	 possible	 evolution‐
ary	 legacy	of	 syndromes	has—up	 to	our	 knowledge—rarely	been	
considered.

In	this	study,	we	investigated	the	variability	of	functional	traits	
and	 the	 syndromes	 they	 form	 in	 wild	 populations	 inhabiting	 het‐
erogeneous	 environments.	 Using	 a	 common	 freshwater	 fish	 (the	
European	minnow,	Phoxinus phoxinus)	as	a	model	species,	we	aimed	
at	 testing	 (a)	whether	 functional	 traits	 and	 their	 covariations	 vary	
between	 populations,	 and	 (b)	whether	 this	 variability	 is	 explained	
by	environmental	factors	and/or	the	evolutionary	history	of	popu‐
lations.	Focusing	on	 four	 functional	 traits	 (i.e.,	 excretion	 rate,	me‐
tabolism,	 body	 mass,	 and	 boldness),	 we	 first	 expected	 that	 both	
mean	values	and	covariations	of	 traits	differ	between	populations	
because	of	their	contrasting	environments	and	evolutionary	histo‐
ries.	Second,	we	focused	on	two	environmental	characteristics	(tem‐
perature	and	predation	 intensity)	 that	affect	 functional	 traits	 (e.g.,	
metabolism,	Gillooly,	2001),	and	that	are	hence	likely	to	also	mod‐
ulate	their	covariations.	Temperature	is	 indeed	a	key	abiotic	factor	
for	ectotherms	as	 it	 can	affect	 their	metabolic	 rate,	behavior,	 and	
body	mass	 (Biro,	Beckmann,	&	Stamps,	 2010;	Brown	et	 al.,	 2004;	
Gillooly,	 2001).	Additionally,	 predation	 risk	 can	 affect	 the	physiol‐
ogy	and	behavior	of	individuals	by	inducing	strong	stresses	(Bell	&	
Sih,	2007;	Hawlena	&	Schmitz,	2010).	We	concomitantly	tested	the	
contribution	of	the	past	evolutionary	history	of	populations	to	ex‐
plain	variation	 in	covariations	among	functional	 traits	using	phylo‐
genetic	models.	Specifically,	we	assessed	the	relationships	between	
genetic	 similarity	 (inferred	 from	 microsatellite	 markers)	 and	 syn‐
drome	 similarity	 among	 populations.	 An	 influence	 of	 the	 environ‐
ment	on	 traits	would	suggest	potential	adaptation	 (or	plasticity	of	
these	syndromes),	and	we	hence	finally	used	a	quantitative	genetic	
approach	(PST/FST,	Leinonen,	McCairns,	O'Hara,	&	Merilä,	2013)	to	
infer	 the	 evolutionary	 processes	 (genetic	 drift	 vs.	 selection/plas‐
ticity)	underlying	differences	in	trait	variation	and	covariation	among	
populations.
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2  | MATERIAL S AND METHODS

2.1 | Model species

The	 European	 minnow	 (P. phoxinus)	 is	 an	 abundant	 species	 in	
Western	Europe	in	cold	lakes	(e.g.,	mountains	lakes)	and	rivers	(e.g.,	
from	small	rivers	at	intermediate	altitude	to	mountain	streams)	with	
summer	 water	 temperature	 generally	 lower	 than	 22–24°C	 (Keith,	
Persat,	Feunteun,	&	Allardi,	2011).	 It	 is	a	small‐bodied	fish	species	
(<12	cm	 long,	 5–8	cm	 long	 as	 an	 adult	 in	 general)	 living	 approxi‐
mately	3	to	5	years,	and	which	displays	a	generalist	diet	composed	of	
small	invertebrates,	algae,	or	zooplankton	(Collin	&	Fumagalli,	2011;	
Frost,	1943).	The	European	minnow	is	considered	as	a	genotypically	
and	phenotypically	variable	species	(Collin	&	Fumagalli,	2011,	2015;	
Fourtune	et	al.,	2018).

2.2 | Sampling sites and animal rearing

We	 focused	 on	 riverine	 European	 minnow	 populations	 from	 the	
Dordogne–Garonne	 river	 basin	 in	 southwestern	France	 (Figure	1).	

We	selected	 thirteen	sites	 (coded	 from	A	 to	M)	 in	different	 rivers	
to	reflect	their	potential	colonization	history	 (Fourtune,	Paz‐Vinas,	
Loot,	Prunier,	&	Blanchet,	2016;	Paz‐Vinas	et	al.,	2018).	Sampled	riv‐
ers	were	selected	based	on	previous	knowledge	in	terms	of	environ‐
mental	and	geographic	characteristics	of	 the	area	 (Fourtune	et	al.,	
2016,	2018).

For	 each	 site,	 we	 focused	 and	measured	 two	 environmental	
variables	 that	 have	 been	 shown	 to	modulate	 functional	 traits	 in	
ectotherms	(Bestion,	Teyssier,	Aubret,	Clobert,	&	Cote,	2014;	Biro	
et	 al.,	 2010;	Gillooly,	2001),	 and	hence	potentially	 their	 covaria‐
tions.	We	first	recorded	water	temperature,	which	was	measured	
as	 the	 mean	 temperature	 between	 July	 and	 September	 2017,	
using	automatic	sensors	(HOBO®,	one	measure	every	hour).	Mean	
summer	water	temperature	varied	from	15.5°C	(site	E)	to	21.5°C	
(site	D)	 (Figure	 1).	 In	 addition,	we	measured	 the	 local	 predation	
pressure,	a	key	biotic	factor	that	can	affect	organisms’	phenotype	
(Langerhans,	 2007).	 Predation	 pressure	 was	 calculated	 for	 each	
site	as	the	density	of	piscivorous	fishes	(namely	northern	pike,	Esox 
lucius;	brown	trout,	Salmo trutta;	rainbow	trout,	Oncorhynchus my‐
kiss;	European	perch,	Perca fluviatilis; pikeperch, Sander lucioperca; 

F I G U R E  1  Distribution	of	the	thirteen	studied	populations	of	European	minnows	(Phoxinus phoxinus).	Names	of	populations	were	coded	
from	A	to	M,	and	the	number	of	individuals	for	each	population	is	given	as	indication

G (34)
I (31) H (28)

C (33)

D (33) E (33)

F (25)

B (12)

A (11)

K (35)
J (30)

M (27)
L (31)
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and	European	eel,	Anguilla anguilla).	This	metric	was	similar	to	that	
described	in	Edeline,	Lacroix,	Delire,	Poulet,	and	Legendre	(2013).	
This	index	of	predation	was	calculated	by	dividing	the	number	of	
sampled	predator	individuals	by	the	surface	covered	during	sam‐
pling;	 these	data—for	 each	 site—were	 sourced	 from	Fourtune	et	
al.	 (2016)	 and	 from	 the	 French	 Agency	 for	 Biodiversity	 (Poulet,	
Beaulaton,	&	Dembski,	2011).

In	summer	2016,	we	collected	adult	fish	on	these	thirteen	sites	
using	electrofishing	(Figure	1).	On	each	river,	we	collected	approx‐
imately	 one	 hundred	 adults	 along	 a	 ~200‐m‐long	 river	 stretch	 to	
ensure	 representativeness	 of	 the	 fish	 habitat.	 Then,	we	 randomly	
sampled	30–40	individuals	among	the	sampled	adults	to	have	a	rep‐
resentative	 subsample	of	 each	population.	 Electrofishing	was	per‐
formed	under	the	authorization	of	“Arrêté	Préfectoraux”	delivered	
by	the	“Direction	Départementale	des	Territoires”	of	each	adminis‐
trative	department	(Haute‐Garonne,	Ariège,	Aveyron,	Lot,	Tarn	and	
Corrèze).	Laboratory	rearing	of	fish	was	performed	under	authoriza‐
tions	of	the	“Direction	Départementale	de	la	Cohésion	Sociale	et	de	
la	Protection	des	Populations	(service	Santé	Protection	des	Animaux	
et	Environnement)	de	l'Ariège,”	Arrêté	Préfectoraux	SA‐013‐PB‐092	
and	Certificat	de	Capacité	09‐273.	Fish	were	brought	to	the	 labo‐
ratory	 and	maintained	 in	 a	 thermoregulated	 room	 for	 two	 to	 four	
weeks	before	experiments.	Fish	from	the	different	populations	were	
held	in	independent	150‐L	tanks	in	which	water	temperature	was	set	
to	17°C	and	photoperiod	to	a	light:dark	cycle	of	12:12	(Golovanov,	
2013).	They	were	fed	with	frozen	bloodworms	three	times	a	week.	
Prior	to	experiments,	fish	were	anesthetized	(benzocaine,	25	mg/L),	
weighed	(to	the	nearest	0.01	g),	and	tagged	with	a	Passive	Integrated	
Transponder	(PIT)	tags	(8	×	1.4	mm,	FDX‐B	“skinny”	PIT	tag,	Oregon	
RFID,	USA)	inserted	in	the	general	cavity	using	a	sterile	scalpel.	Fish	
recovered	and	acclimatized	to	the	rearing	room	for	10	days	before	
the	quantification	of	three	functional	traits	in	addition	to	body	mass	
(boldness,	 excretion	 rate,	 and	metabolic	 rate).	Metabolic	 rate	was	
measured	on	day	1	(morning),	while	excretion	rate	and	boldness	were	
measured	on	day	2	in	the	morning	and	in	the	afternoon,	respectively.	
Before	quantifying	metabolic	rate,	individuals	were	starved	for	two	
days	to	ensure	the	same	starvation	level	among	individuals.

2.3 | Boldness

Boldness	was	assessed	for	each	individual	independently	in	circular	
containers	 (30	cm	 in	 diameter)	 filled	with	 5L	 of	 dechlorinated	 tap	
water	at	17°C	and	500	ml	of	water	from	a	tank	containing	conspe‐
cifics.	 The	 containers	were	 surrounded	by	 curtains	 to	 standardize	
light	conditions	and	to	hide	the	experimenter.	A	shelter	(pipe,	7	cm	
length	×	3	cm	diameter)	was	 added	 in	 each	 container	 to	 allow	 the	
fish	to	hide.	After	having	introduced	each	individual	into	the	shelter	
and	after	10	min	of	acclimatization	to	reduce	stress	level	induced	by	
handling,	the	shelter	was	opened	and	each	individual	was	filmed	for	
fifteen	minutes.	Video	footage	was	subsequently	analyzed	with	the	
software	“BORIS”	(Friard	&	Gamba,	2016).	Boldness	was	quantified	
as	the	time	spent	outside	of	the	shelter.	The	order	and	the	contain‐
ers	in	which	individuals	were	assayed	were	randomly	attributed.	All	

behavioral	assays	were	performed	in	the	afternoon	(from	12:00	p.m.	
to	16:00	p.m.)	to	minimize	the	potential	effects	of	circadian	rhythms.

2.4 | Excretion rate

Excretion	rate	was	quantified	using	nitrogen	excreted	by	organisms	
as	the	dissolved	form	of	ammonium	NH+

4
.	Quantifying	excretion	rate	

on	 starved	 individuals	 was	 done	 to	 avoid	 an	 effect	 of	 differential	
consumption,	which	is	a	strong	factor	affecting	the	rate	of	nitrogen	
excretion	(Glaholt	&	Vanni,	2005).	Changes	in	NH+

4
 concentration in 

water	can	affect	ecosystem	functioning	through	an	increase	in	nu‐
trient	 availability	 (Capps	 &	 Flecker,	 2013)	 and	 primary	 production	
(Bassar	et	al.,	2016;	Schmitz,	Hawlena,	&	Trussell,	2010).	Following	
Villéger	et	al.	(2012),	individuals	were	placed	in	plastic	bags	contain‐
ing	500	ml	of	spring	bottled	water	for	1	hr	at	17°C.	Individuals	were	
then	removed	and	100	ml	of	water	was	filtered	through	a	glass	micro‐
fiber	 filter	 (Whatman,	GF/C,	diameter	=	25	mm),	and	samples	were	
frozen	at	−20°C.	Excretion	rate	(NH+

4
 in μg	L−1 hr−1)	was	determined	

with	a	high‐performance	ionic	chromatograph	(Dionex	DX‐120).

2.5 | Metabolic rate

We	measured	the	oxygen	consumption	rate	as	a	proxy	of	the	meta‐
bolic	 rate	of	 individuals.	Fish	were	 individually	placed	 in	a	 custom	
made	 metabolic	 chamber	 filled	 with	 500	ml	 of	 dechlorinated	 tap	
water	and	hermetically	sealed.	Chambers	were	set	in	a	thermoregu‐
lated	room	at	17°C	in	the	dark	to	lower	the	stress	level.	We	meas‐
ured	the	metabolic	rate	just	after	handling	so	that	the	same	stress	
was	imposed	to	all	individuals.	Measurements	of	oxygen	concentra‐
tion	were	taken	after	10	min,	allowing	individuals	to	acclimate,	and	
continuously	 every	 five	 seconds	 for	 50	min	 using	 oxygen	 probes	
(OXROB10,	Pyroscience).	The	metabolic	rate	was	calculated	as	the	
absolute	slope	between	oxygen	quantity	 in	the	chamber	and	time,	
reflecting	the	hourly	consumption	of	oxygen	(mg/hr).

2.6 | Genetic analyses

Thirty	additional	adults	from	each	of	the	thirteen	sites	were	sampled	
for	genetic	material.	For	each	of	these	thirty	individuals,	we	collected	
and	preserved	in	70%	ethanol	a	small	piece	of	pelvic	fin	and	individ‐
uals	were	then	released	in	their	respective	sampling	site.	Genomic	
DNA	was	extracted	using	a	salt‐extraction	protocol	(Aljanabi,	1997).	
Eighteen	autosomal	microsatellite	markers	were	considered	 in	 this	
study:	Polymerase	chain	reactions	(PCR)	and	genotyping	were	per‐
formed	as	detailed	 in	Supporting	 Information	Appendix	S1,	 result‐
ing	in	a	final	data	set	of	357	genotypes.	We	checked	for	multilocus	
deviation	from	Hardy–Weinberg	equilibrium	(HWE)	and	for	gametic	
disequilibrium	using	GENEPOP	4.2.1	(Rousset,	2008)	after	sequen‐
tial	Bonferroni	correction	to	account	for	multiple	related	tests	(Rice,	
1989).	The	presence	of	null	alleles	was	then	assessed	at	each	locus	by	
analyzing	homozygote	excess	in	five	populations	that	did	not	follow	
HWE,	using	MICROCHECKER	2.2.3	 (Van	Oosterhout,	Hutchinson,	
Wills,	 &	 Shipley,	 2004).	 We	 discarded	 from	 further	 analyses	 any	
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locus	showing	significant	gametic	disequilibrium	and/or	evidence	of	
null	alleles,	resulting	in	the	withdrawal	of	one	locus	(CtoG‐075),	for	a	
total	number	of	seventeen	loci.

We	 computed	Nei's	 standard	 genetic	 distance	 (Nei,	 1973)	 be‐
tween	each	pair	of	populations	using	the	diveRsity	R‐package	(func‐
tion diffCalc;	Keenan,	McGinnity,	Cross,	Crozier,	&	Prodöhl,	2013).	A	
hierarchical	cluster	analysis	was	then	performed	to	uncover	genetic	
relatedness	 among	 the	 thirteen	 populations	 using	 the	 functions	
hclust	(R‐package	stats)	and	as.phylo	(R‐package	ape;	Paradis,	Claude,	
&	 Strimmer,	 2004)	 to	 convert	 the	 genetic	 dissimilarity	matrix	 into	
an	unrooted	phylogenetic	tree	based	on	complete	linkage	method.

Finally,	we	estimated	the	overall	level	of	genetic	differentiation	
FST	 among	 the	 thirteen	 populations	 using	 the	 hierfstat R‐package	
(Goudet,	 2005).	 The	 resulting	 global	FST	 corresponds	 to	 the	 inter‐
population	variance	component	 in	allelic	 frequencies	 (Yang,	1998),	
and	to	the	level	of	differentiation	among	populations	due	to	genetic	
drift	only	(Leinonen	et	al.,	2013).	This	value	is	directly	comparable	to	
the	 interpopulation	variance	component	 in	quantitative	 traits	 (PST,	
see	 below).	 A	 95%	 confidence	 interval	 (CI)	was	 computed	 for	 the	
observed	global	FST	value	using	a	classical	cluster	bootstrap	proce‐
dure	with	1,000	iterations	(Field	&	Welsh,	2007):	CI	lower	and	upper	
bounds	were	computed	as	the	95%	percentiles	of	a	theoretical	dis‐
tribution	of	1,000	FST	values	obtained	from	the	random	sampling	of	
the	thirteen	populations	with	replacement.

2.7 | Statistical analyses

2.7.1 | Trait variability among populations

For	each	of	the	four	traits	separately,	we	tested	whether	there	was	
significant	variability	among	the	thirteen	populations	using	an	analy‐
sis	of	variance	(ANOVA)	with	the	population	of	origin	as	the	expli‐
cative	 categorical	 variable.	 To	 meet	 the	 assumptions	 of	 Gaussian	
models	(normality	of	the	residuals	and	homoscedasticity),	data	were	
transformed:	 Body	mass,	 metabolic	 rate,	 and	 excretion	 rate	were	
log‐transformed	and	boldness	was	square‐root‐transformed.

2.7.2 | Heterogeneity in trait covariations among 
populations

We	 tested	whether	 covariations	 among	 the	 four	 traits	 (i.e.,	 syn‐
dromes)	were	different	among	the	thirteen	populations.	We	first	
synthetized	and	described,	 for	each	population,	patterns	of	 trait	
covariation	 using	 path	 analysis.	 Traits	 were	 scaled	 to	 the	 mean	
within	 each	 population	 (i.e.,	 each	 population	 displays	 a	mean	 of	
zero	 with	 a	 variance	 of	 one	 for	 each	 trait),	 and	 a	 general	 path	
analysis	 linking	each	 trait	 to	 the	others	 (saturated	path	 analysis)	
was	computed	for	each	population	independently	using	the	lavaan 
R‐package	 (Rosseel,	2012).	These	 resulted	 in	 thirteen	path	mod‐
els	 (each	path	model	 corresponding	 to	 a	population's	 syndrome)	
and	thirteen	associated	covariance	matrices.	Then,	we	then	tested	
whether	 these	path	models	 (and	hence	 trait	 covariations)	 varied	
among	 populations	 using	 a	 test	 of	 heterogeneity	 on	 covariance	

matrices	 among	 groups	 (metaSEM	 R‐package,	 Cheung,	 2015).	
Briefly,	this	analysis	allows	assessing	the	heterogeneity	of	covari‐
ance	matrices	with	 a	 combination	 of	 indices	 (Hooper,	Coughlan,	
&	 Mullen,	 2008):	 (a)	 root	 mean	 square	 error	 of	 approximation	
(RMSEA,	expected	to	be	higher	than	0.06	if	the	matrices	are	het‐
erogeneous),	 (b)	 standardized	 root	mean	 square	 residual	 (SRMR,	
expected	 to	be	higher	 than	0.09	 if	 the	matrices	are	heterogene‐
ous),	and	(c)	comparative	fit	index	(CFI,	expected	to	be	lower	than	
0.96	if	the	matrices	are	heterogeneous).

2.7.3 | Heterogeneity of pairwise covariations

We	tested	whether	 the	 six	 covariations	considered	separately	dif‐
fered	among	populations	using	a	test	of	heterogeneity	(Rosenberg,	
Adams,	&	Gurevitch,	1997).	We	estimated	and	extracted	the	covari‐
ations	between	each	pair	of	traits	(six	pairs	in	total:	mass–metabo‐
lism;	 mass–excretion;	 mass–boldness;	 metabolism–excretion;	
metabolism–boldness;	and	excretion–boldness)	from	the	path	mod‐
els	described	above	so	as	to	control	for	all	relationships	among	traits	
simultaneously.	We	applied	meta‐analytic	tools	to	analyze	the	het‐
erogeneity	 in	covariances.	We	applied	the	Z‐Fisher	transformation	
to	each	covariance	value	(Cov)	to	obtain	a	standardized	Zr using the 

following	 formula:	 Zr=0.5 ln
(1+Cov)
(1−Cov)

,	 and	 we	 calculated	 the	 corre‐

sponding	standard	error	as:	seZr=
1

√

n−3
	 (Nakagawa	&	Cuthill,	2007)	

where n	 is	 the	sample	size	of	 the	considered	population.	We	esti‐
mated	 the	degree	of	variability	of	Zr	 for	each	pair	of	 traits	among	
populations	 with	 a	 test	 of	 heterogeneity	 (Higgins	 &	 Thompson,	
2002;	Viechtbauer,	2010).	This	index	(H)	indicates	the	percentage	of	
heterogeneity	 and	 tests	 whether	 heterogeneity	 in	 a	 data	 set	 is	
higher	than	that	expected	by	chance.	The	standard	error	of	Zr was 
added	as	a	pondering	parameter	 to	 the	heterogeneity	 test	 to	give	
more	weight	to	populations	with	more	individuals.

2.7.4 | Effect of phylogeny

We	tested	whether	phylogenetically	 related	populations	displayed	
similar	traits	and	trait	covariations	using	phylogenetic	models	(PGLS,	
Garland	&	Ives,	2000).	These	models	allow	incorporating	the	genetic	
relatedness	among	populations	through	a	phylogenetic	tree	used	to	
estimate	a	λ	value	corresponding	to	the	degree	of	phylogenetic	con‐
servatism	in	the	response	variable.	λ	is	expected	to	vary	between	0	
and	1,	where	0	means	no	phylogenetic	dependence	in	a	trait	among	
populations,	and	1	means	that	the	focal	trait	is	phylogenetically	con‐
served	 (Comte,	 Murienne,	 &	 Grenouillet,	 2014;	 Harvey	 &	 Purvis,	
1991).	We	 calculated	λ	 independently	 for	 each	 trait	 and	 each	 co‐
variation	(calculated	from	path	analyses;	see	above)	using	only	the	
intercept	as	fixed	effect.

2.7.5 | Effect of environmental characteristics

We	used	phylogenetic	models	to	assess	the	effects	of	temperature	
and	predation	on	traits	and	covariations.	We	ran	PGLS	for	each	trait	
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and	 covariation	 (Zr)	 independently,	 with	 temperature,	 predation	
pressure	(measured	at	the	site	level),	and	the	resulting	two‐term	in‐
teraction	as	explanatory	variables.	The	phylogenetic	tree	based	on	
microsatellite	markers	was	incorporated	into	each	model	to	account	
for	genetic	relatedness	among	populations.	When	λ	=	0,	the	model	
is	equivalent	 to	a	classical	 linear	model,	whereas	when	λ	=	1	 it	ac‐
counts	for	phylogenetic	conservatism	in	trait.	We	then	used	an	in‐
formation‐theoretic	approach,	based	on	Akaike	Information	Criteria	
(AIC)	comparisons,	to	select	the	model(s)	that	best	fit	the	data.	We	
considered	model(s)	that	fell	within	a	ΔAIC	<4	as	“best”	model(s)	as	
they	would	maximize	the	 likelihood	of	the	model	while	taking	 into	
account	 the	number	 of	 parameters,	 and	we	 rejected	 those	with	 a	
ΔAIC>4	(Burnham	&	Anderson,	2002).	We	ran	PGLS	models	using	
the pgls	function	from	the	caper	R‐package	(Orme	et	al.,	2013).

2.7.6 | FST/PST comparison

Finally,	 we	 tested	 whether	 variability	 in	 traits	 and	 covariations	
among	populations	were	higher	or	not	than	expected	under	the	hy‐
pothesis	that	differentiation	is	due	to	genetic	drift	only.	To	do	so,	we	
compared	FST	calculated	on	neutral	genetic	markers	(corresponding	
to	the	level	of	differentiation	among	populations	expected	if	genetic	
drift	only	 is	 affecting	 traits)	 to	PST	values	calculated	 for	each	 trait	
and	covariation	 independently.	PST	 is	the	phenotypic	equivalent	of	
the QST	 index,	 although	 calculated	 for	 wild	 populations	 when	 no	
information	on	the	parental	relatedness	among	individuals	 is	avail‐
able	(Leinonen,	Cano,	MäKinen,	&	Merilä,	2006).	A	PST value higher 
than	 the	global	FST	value	 indicates	 that	phenotypic	differentiation	
among	populations	is	higher	than	expected	by	genetic	drift	only,	and	
that	mechanisms	 such	 as	 plasticity	 and/or	 selection	might	 explain	
these	differences	(Leinonen	et	al.,	2013).	The	use	of	F0	individuals	
allows	comparison	of	natural	trait	variability	and	covariations	exist‐
ing	among	wild	populations.	However,	this	approach	does	not	enable	
to	 tease	 apart	 genetic	 and	 plastic	 contributions	 to	 trait	 variability	
and	covariations.	Therefore,	PST	here	represents	the	level	of	pheno‐
typic	differentiation	that	is	due	to	both	genetic	and	developmental	
components.	We	estimated	a	PST	for	each	trait	as:	�

2

B
∕�2

B
+�

2

W
 where 

�
2

B
 and �2

W
were,	 respectively,	 the	 among‐	 and	 within‐population	

variance	in	the	considered	trait	(Leinonen	et	al.,	2013).	Among‐	and	
within‐population	variance	components	were	estimated	from	gen‐
eralized	linear	mixed	models	with	the	trait	as	response	variable,	the	
intercept	as	a	 fixed	effect,	 and	 the	population	as	a	 random	effect	
(Leinonen	et	al.,	2013).

In	the	case	of	covariations,	among‐	and	within‐population	vari‐
ance	 components	 were	 calculated	 in	 a	 similar	 way	 but	 with	 the	
addition	 of	 a	 random	 slope,	 corresponding	 to	 the	 covariable	 trait	
(Supporting	 Information	 Appendix	 S2).	 This	 allows	 estimating	
among‐	and	within‐population	variance	in	the	covariation	between	
each	 pair	 of	 traits	 (Mazé‐Guilmo,	 Blanchet,	 Rey,	 Canto,	 &	 Loot,	
2016).	The	generalized	linear	mixed	models	were	run	using	the	lme4 
R‐package	(Bates,	Maechler,	Bolker,	&	Walker,	2014).	We	applied	a	
classical	bootstrap	clustering	procedure	with	1,000	iterations	(Field	
&	Welsh,	2007)	to	assess	the	95%	confidence	 interval	 for	PST.	We	

then	compared	the	CI	of	PST	for	each	trait	and	each	covariation	(i.e.,	
10 PST	quantified	 in	total:	4	single	traits	and	6	covariations	among	
them)	to	the	CI	of	FST.	All	analyses	were	performed	using	R	(R	Core	
Team,	2013).

3  | RESULTS

3.1 | Trait variability among populations

Body	 mass	 (F	=	29.859,	 df	=	12,	 349,	 p	<	0.001),	 metabolic	 rate	
(F	=	14.538,	 df	=	12,	 350,	 p	<	0.001),	 excretion	 rate	 (F	=	14.842,	
df	=	12,	 322,	 p	<	0.001),	 and	 boldness	 (F	=	5.179,	 df	=	12,	 329,	
p	<	0.001)	 were	 all	 significantly	 different	 among	 populations	
(Figure	2).	There	was	no	strong	evidence	for	phylogenetic	conserva‐
tism	for	any	of	the	traits	 (see	Supporting	Information	Figure	S1):	λ 
was	highest	 for	body	mass	 (λ	=	0.87)	and	metabolic	rate	 (λ	=	0.74),	
although	none	of	these	values	were	significantly	different	from	zero	
(Table	1).	Regarding	determinants	of	 trait	means,	 the	best	models	
explaining	 body	 mass	 included	 temperature,	 predation	 pressure,	
and	their	interaction	(Table	1).	Body	mass	increases	as	temperature	
decreases	(negative	relationship),	and	this	increase	was	exacerbated	
as	predation	pressure	increased	(Figure	3a).	The	model	selection	for	
the	three	other	traits	led	to	equivalent	models,	and	the	null	models	
were,	 in	all‐three	cases,	 the	best	models	 (Table	1).	This	 suggested	
that	metabolic	 rate,	 excretion	 rate,	 and	boldness	were	neither—or	
weakly—related	to	temperature,	nor	to	predation	pressure.	Finally,	
the	estimates	of	phenotypic	differentiation	among	populations	(PST)	
were	high	for	body	mass,	metabolic	rate,	and	excretion,	and	were	sig‐
nificantly	higher	than	the	level	of	neutral	genetic	differentiation	(FST)	
(Figure	4).	Phenotypic	differentiation	measured	for	boldness	was	not	
different	from	what	was	expected	under	the	drift	hypothesis.

3.2 | Among population heterogeneity in functional 
trait syndromes and covariations

We	 found	 that	 populations	 varied	 in	 their	 syndromes	 of	 func‐
tional	 traits	 since	 the	 matrices	 of	 covariations	 were	 heterogene‐
ous	 (RMSEA	=	0.266,	 CFI	=	0.602,	 SRMR	=	0.263,	 Supporting	
Information	Figure	S2).	For	 instance,	 the	 syndrome	 in	 the	popula‐
tion	F	was	characterized	by	positive	covariations	among	body	mass,	
metabolic	 rate,	 and	 excretion	 rate,	 and	 a	 negative	 covariation	 be‐
tween	boldness	and	excretion	rate	(Figure	5a);	whereas	population	
L	 displayed	 negative	 covariations	 between	 body	 mass	 and	 bold‐
ness,	 boldness	 and	 metabolic	 rate,	 and	 metabolic	 and	 excretion	
rates,	while	the	body	mass–metabolic	rate	covariation	was	positive	
(Figure	5b).

This	was	confirmed	since	we	also	found	strong	significant	het‐
erogeneity	 among	 populations	 for	 several	 trait	 covariations.	 In	
particular,	 the	 covariations	measured	between	body	mass	 and	ex‐
cretion	 rate	 (H	=	72.03%,	Q	=	45.837,	df	=	12,	p	<	0.001),	 between	
excretion	rate	and	metabolic	rate	(H	=	69.20%,	Q	=	41.229,	df	=	12,	
p	<	0.001),	 and	between	excretion	 rate	and	boldness	 (H	=	58.26%,	
Q	=	31.296,	 df	=	12,	 p	=	0.002)	 strongly	 (and	 significantly)	 varied	
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among	populations	(Figure	6b,e,	and	f).	For	instance,	the	covariation	
between	 metabolic	 and	 excretion	 rates	 was	 significantly	 positive	
for	 six	 populations,	 significantly	 negative	 for	 one	 population,	 and	
	nonsignificant	for	the	remaining	populations	(Figure	6e).	The	covari‐
ations	between	body	mass	and	metabolic	rate,	between	metabolic	
rate	and	boldness,	and	between	body	mass	and	boldness	were	ho‐
mogeneous	(p	>	0.052,	Figure	6a,c,	and	d).

We	did	not	find	evidence	for	significant	phylogenetic	conserva‐
tism	for	any	of	the	covariations	(Table	1	and	Supporting	Information	
Figure	 S3).	 The	 best	 models	 explaining	 the	 covariation	 between	
body	mass	and	metabolic	rate	included	temperature,	predation,	and	

the	 temperature‐by‐predation	 interaction	 term	 (Table	 1).	 For	 this	
covariation,	 the	 null	 model	 was	 strongly	 rejected	 from	 the	 set	 of	
best‐supported	models	(ΔAIC	>4),	and	the	results	suggested	that	the	
strength	of	 the	covariation	 tended	to	 increase	as	 the	 temperature	
decreased,	and	when	the	predation	pressure	increased	(Figure	3b).	
Regarding	 other	 covariations,	 models	 including	 temperature	 and	
predation	pressure	were	not	strongly	supported	by	the	data	as	the	
null	models	were	always	selected	within	the	set	of	models	displaying	
a ΔAIC	<4	(Table	1).

Finally,	covariation	measured	between	body	mass	and	metabolic	
rate	displayed	a	PST	value	that	was	significantly	higher	than	the	global	

F I G U R E  2  Mean	trait	values	for	body	mass	(a),	metabolic	rate	(b),	excretion	rate	(c),	and	boldness	(d)	in	function	of	the	population	origin	
of	fish.	Error	bars	represent	±1SE
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FST	value	(Figure	4).	PST	measured	for	the	covariation	between	body	
mass	and	excretion	rate	was	higher	than	the	global	FST,	but	the	CIs	of	
the	two	estimates	overlapped.	For	other	trait	covariations,	PST values 
were	not	significantly	different	from	the	global	FST	value	(Figure	4).

4  | DISCUSSION

We	demonstrated	that	functional	traits,	trait	covariations,	and	syn‐
dromes	 they	 form	 strongly	 varied	 across	populations	of	European	

minnow	sampled	in	a	large	riverscape.	We	further	found	that	multi‐
ple	processes	explained	variability	in	functional	traits,	their	covaria‐
tions,	and	hence	in	syndromes	of	functional	traits.	For	instance,	we	
found	 evidence	 for	 adaptive	 mechanisms	 (plasticity	 and/or	 selec‐
tion)	 related	to	water	temperature	and/or	predation	for	explaining	
the	covariation	between	body	mass	and	metabolic	rate.	In	parallel,	
we	 found	 that	 other	 traits	 and	 covariations	 were	 consistent	 with	
the	hypothesis	 that	genetic	drift	 is	 sufficient	 to	explain	variability,	
which	would	suggest	that	even	nonadaptive	processes	could	sustain	
intraspecific	variation	in	functional	traits.	Finally,	we	do	not	detect	

TA B L E  1  Results	of	the	model	selection	to	explain	the	variability	of	functional	traits	and	their	covariations	among	populations.	All	
possible	phylogenetic	models	(PGLS,	see	the	main	text)	were	run	for	each	trait	and	then	compared	based	on	AIC.	Bold	values	represent	
models	that	fell	in	a	ΔAIC	<4

λ (p‐value)

Models

Null Temperature Predation
Temperature 
and predation

Temperature‐by‐ 
predation

Mass 0.87	(0.12) 7.982 7.018 9.997 0 0.194

Metabolism 0.74	(0.19) 0 1.451 1.997 2.907 4.547

Excretion 0	(1) 0 1.016 1.67 2.952 4.521

boldness 0.55	(1) 0 1.982 1.932 3.925 5.924

Mass–metabolism 0	(1) 4.123 3.528 1.966 3.929 0

Mass–excretion 0	(1) 0 1.411 1.8 0.732 1.617

Mass–boldness 0	(1) 0 1.93 1.057 2.559 2.27

Metabolism–excretion 0	(1) 2.719 4.611 4.64 5.963 0

Metabolism–boldness 0	(1) 0.35 1.698 0 1.757 3.332

Excretion–boldness 0	(1) 0 1.102 1.853 2.862 3.639

F I G U R E  3   Interaction	between	temperature	(°C)	and	predation	pressure	(ind.m2)	explains	the	variation	in	body	mass	(a),	and	in	the	
covariation	between	body	mass	and	metabolic	rate	(b).	The	R2 and the p‐values	are	extracted	from	the	best	models	based	on	AIC	selection	
(see	Table	1),	and	“Pint”	represents	the	p‐value	for	the	interaction	between	temperature	and	predation
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any	evidence	of	evolutionary	conservatism	in	any	of	the	functional	
traits nor in their covariations.

We	showed	that	body	mass,	metabolic	rate,	and	excretion	rate	
differed	 among	 populations	 more	 than	 expected	 by	 genetic	 drift	
only,	suggesting	trait	divergences	arose	from	selection	and/or	devel‐
opmental	plasticity.	Although	our	design	does	not	allow	selection	to	
be	teased	apart	from	developmental	plasticity,	our	findings	are	theo‐
retically	sound	and	may	suggest	adaptation	to	environmental	condi‐
tions	since	the	decrease	in	body	mass	with	temperature	is	expected	
for	ectotherms	(Daufresne,	Lengfellner,	&	Sommer,	2009).	Here,	we	
found	that	both	temperature	and	predation	intensity	affected	body	
mass.	We	can	speculate	that	higher	body	mass	could	allow	minnows	
to	reach	a	size	refuge	from	predators,	and/or	to	increase	their	loco‐
motor	performances	to	escape	predators	(Domenici,	2001;	Villéger	
et	 al.,	 2017).	 Nonetheless,	 this	 result	 should	 be	 interpreted	 with	
care	since	our	statistical	power	is	weak	and	because	of	collinearity	
between	water	temperature	and	predation.	Indeed,	we	could	alter‐
natively	argue	(based	on	the	visual	inspection	of	biplot,	Supporting	

Information	 Figure	 S4)	 that	 a	 quadratic	 relationship	 (Supporting	
Information	 Figure	 S4)	 exists	 between	 body	 mass	 and	 predation	
pressure	that	we	may	fail	to	properly	identify	because	of	the	small	
sample	size	and	the	collinearity	with	water	temperature	(Prunier	&	
Blanchet,	2018).	Collinearity	can,	in	some	cases,	lead	to	inappropri‐
ate	 conclusions	 since	 it	 is	 difficult	 to	 discriminate	 the	 causal	 links	
among	explicative	variables,	or	because	model	estimates	may	be	bi‐
ased	(Prunier	&	Blanchet,	2018;	Prunier,	Colyn,	Legendre,	Nimon,	&	
Flamand,	2015).	However,	 since	 the	 results	are	biologically	 sound,	
we	are	 confident	 that	body	mass	 is	 adaptively	 related	 to	environ‐
mental	 variables.	We	 also	 found	 high	 variability	 in	 metabolic	 and	
excretion	 rates,	which	were	 also	 likely	 driven	 by	 adaptive	mecha‐
nisms	(Figure	4).	Nonetheless,	we	failed	to	detect	the	environmental	
pressures	driving	divergences	in	these	two	traits.	The	variability	in	
excretion	 rate	 probably	 stands	 in	 trophic	 and	 stoichiometric	 fac‐
tors,	 such	 as	 trophic	 niche,	 elemental	 composition	 of	 resources,	
or	 allochthonous	nutrient	 inputs	 (El‐Sabaawi,	Warbanski,	Rudman,	
Hovel,	&	Matthews,	2016;	Evangelista	et	al.,	2017),	which	could	be	

F I G U R E  4  Estimates	of	PST	for	
each	trait	(body	mass,	metabolic	rate,	
excretion	rate,	and	boldness)	and	for	each	
covariation	(body	mass–metabolic	rate,	
body	mass–excretion	rate,	body	mass–
boldness,	metabolic	rate–excretion	rate,	
metabolic	rate–boldness,	and	excretion	
rate–boldness),	and	FST	(vertical	straight	
line)	on	neutral	microsatellite	markers.	
Horizontal	bars	represent	95%	confident	
interval	of	PST, and vertical dotted line 
represents	95%	confident	interval	of	
FST that were calculated using cluster 
bootstrap	procedure
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F I G U R E  6  Covariations	between	each	pair	of	functional	traits:	(a)	body	mass–metabolic	rate,	(b)	body	mass–excretion	rate,	(c)	body	
mass–boldness,	(d)	metabolic	rate–excretion	rate,	(e)	metabolic	rate–boldness,	and	(f)	excretion	rate–boldness.	Points	represent	the	average	
trait	value	for	each	population,	and	lines	on	points	represent	the	covariations	(i.e.,	the	slope)	between	traits	within	each	population.	Blue	and	
red	lines	indicate	significant	(α	=	0.05)	positive	and	negative	covariations,	respectively.	The	dotted	lines	represent	the	relationship	between	
traits	across	the	thirteen	populations
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characteristic	of	each	geographical	site.	Hence,	measuring	stoichio‐
metric	 variability	 of	 individuals	 and	 populations	 would	 benefit	 to	
infer	hypotheses	regarding	variability	in	excretion	rate.

We	found	that	traits	can	not	only	vary	among	populations,	but	
also	that	functional	traits	formed	different	syndromes	among	pop‐
ulations	of	European	minnow.	Indeed,	the	sets	of	covariations	were	
different	 among	 populations,	 and	 multiple	 patterns	 were	 identi‐
fied,	with	 some	 trait	 covariations	 being	more	 robust	 than	 others.	
For	 instance,	 the	allometric	 relationships	between	body	mass	and	
metabolic	 rate,	 and	 between	 body	mass	 and	 excretion	 rate	were	
both	positive	across	 all	 populations,	but	 the	 former	was	homoge‐
neous	among	populations	(i.e.,	stable),	whereas	the	latter	was	het‐
erogeneous	and	hence	more	flexible	among	populations	(Figure	6).	
Similarly,	the	covariation	between	excretion	rate	and	boldness	was	
flexible,	confirming	that	relationships	between	behavioral	and	phys‐
iological	 traits	 can	be	 complex	 (Killen	 et	 al.,	 2013).	 These	 various	
functional	trait	covariations	among	populations	subsequently	gener‐
ated	variability	in	syndromes.	Such	variability	has	been	documented	
in	 behavioral	 traits	 (Dingemanse	 et	 al.,	 2007)	 and	 morphological	
traits	 (Berner,	 Stutz,	 &	 Bolnick,	 2010),	 but	 rarely	 among	multiple	
types	of	traits.	The	various	biological	mechanisms—such	as	pleiot‐
ropy	or	allometry—underlying	the	links	among	traits	might	therefore	
be	modulated	differently	among	populations,	resulting	in	difference	
of	syndromes	(Peiman	&	Robinson,	2017).	Hence,	it	would	be	worth	
further	investigating	the	biological	mechanisms	driving	trait	covari‐
ations	 to	 better	 appraise	 the	 variability	 of	 functional	 syndromes	
(Killen,	Atkinson,	&	Glazier,	2010;	Raffard	et	al.,	2017).

Although	we	detected	variability	 in	syndromes	of	 functional	
traits,	 the	 lack	 of	 determinants	 (i.e.,	 temperature	 or	 predation)	
and the low PST	values	for	most	covariations	suggest	that	a	non‐
negligible	 part	 of	 the	 heterogeneity	 in	 syndromes	 variability	
may—in	our	case—arise	from	the	effect	of	genetic	drift.	Actually,	
the	relationship	between	body	mass	and	metabolic	rate	was	the	
only	 covariation	whose	 variability	was	 likely	 driven	by	 adaptive	
mechanisms.	Indeed,	as	revealed	by	the	PST/FST	analysis	and	the	
trait–environment	 analysis,	 we	 found	 evidence	 that	 selection	
and/or	 plasticity	 associated	 with	 predation	 pressure	 and	 water	
temperature	 may	 drive	 variation	 observed	 among	 populations.	
Previous	works	 have	 reported	 variability	 in	 the	 allometric	 rela‐
tionship	between	body	mass	and	metabolic	rate	at	both	inter‐	and	
intraspecific	 levels	 in	 many	 organisms	 (Bokma,	 2004;	 Glazier,	
2005;	Seibel,	2007).	Here,	covariations	 increase	as	 temperature	
decreases	 and	 predation	 increases	 (Figure	 2b).	 Although	 this	
should	 be	 interpreted	 with	 care	 (see	 statistical	 caution	 above),	
the	 metabolic	 allometry	 might	 vary	 allowing	 individuals	 to	 op‐
timize	 energetic	 efficiency	 under	 different	 environmental	 con‐
straints	(Glazier,	2005;	Killen	et	al.,	2010).	Fish	can	notably	adapt	
their	lifestyle	to	increase	or	decrease	their	energetic	assimilation	
in	order	to	cope	with	biotic	and	abiotic	constraints,	such	as	pre‐
dation	 (Killen	 et	 al.,	 2010).	 This	 confirms	 that	 trait	 architecture	
within	 populations	 can	 be	 complex,	 and—in	 some	 cases—allow	
individuals	 to	adapt/acclimatize	 to	 their	environment	 (Peiman	&	
Robinson,	2017).

To	 conclude,	we	 found	 that	 syndromes	 in	 functional	 traits	 can	
strongly	vary	among	populations,	and	that	both	adaptive	(natural	se‐
lection	and/or	plasticity)	 and	nonadaptive	processes	 (genetic	drift)	
are	 driving	 intraspecific	 heterogeneity	 in	 these	 syndromes.	 Since	
functional	traits	can	affect	ecological	processes	(Lavorel	&	Garnier,	
2002;	Raffard	et	al.,	2017;	Violle	et	al.,	2007),	the	variability	in	func‐
tional	syndromes	may	exert	puzzling	effects	on	ecological	processes.	
For	 instance,	 the	variability	 in	covariations	 involving	excretion	rate	
may	 have	 implications	 for	 the	 dynamics	 of	 nutrient	 recycling	 and	
ecological	stoichiometry	(Atkinson,	Capps,	Rugenski,	&	Vanni,	2017;	
Vanni,	2002);	while	in	some	populations,	large	individuals	should	ex‐
crete	a	high	quantity	of	nitrogen,	they	should	excrete	a	low	quantity	
of	 nitrogen	 in	 other	 populations,	 with	 potential	 consequences	 for	
primary	production	(Evangelista	et	al.,	2017;	McIntyre	et	al.,	2008).	
Variability	of	syndromes	may	have	further	ecological	effects	through	
trophic	mechanisms	since	individuals	with	different	functional	traits	
may	have	different	trophic	niches	(Villéger	et	al.,	2017).	Trophic	vari‐
ability	can	subsequently	affect	community	structure	and	ecosystem	
functioning	(Des	Roches,	Shurin,	Schluter,	&	Harmon,	2013).	Further	
studies	should	aim	to	experimentally	test	how	heterogeneity	in	func‐
tional	syndromes	is	acting	on	ecological	dynamics.
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