Letter

ECOLOGY OF FRESHWATER FISH

Habitat use of an artificial wetland by the invasive catfish *Ameiurus melas*

Cucherousset J, Paillisson J-M, Carpentier A, Eybert M-C, Olden JD. Habitat use of an artificial wetland by the invasive catfish *Ameiurus melas*. Ecology of Freshwater Fish 2006: 15: 589–596. © 2006 The Authors. Journal compilation © 2006 Blackwell Munksgaard

Abstract - This study examined the distribution and habitat selection of the invasive black bullhead [Ameiurus melas (Rafinesque)] in the ditches and surrounded temporary flooded habitats of an artificial wetland in western France. A multiscale approach was used to quantify patterns of A. melas abundance in relation to physical habitat characteristics in the ditch network. Young-of-the-year (YOY) and adult A. melas largely dominated the local fish assemblage but were highly variable among sites. Although we found evidence for some fine-scale habitat differences for YOY and adult individuals, the abundance of A. melas was positively and consistently related to the dominance of reed beds. Furthermore, A. melas preferentially used reed beds as opposed to marsh meadows during the flooding period. The results from this study suggest that the invasion of A. melas has been facilitated by the expansion of reed beds associated with the diminution of agricultural pressure in recent decades. This study represents an unusual example where human activities can have had an unexpected effect by facilitating an invasive fish species.

Introduction

Invasive species constitute a major threat to biodiversity and ecosystem integrity and cause substantial economic damage (Vitousek *et al.* 1997; Kolar & Lodge 2001; Lee 2002, Pimentel 2005). Freshwaters are considered one of the most severely degraded ecosystems in industrialised countries (Oberdorff et al. 2002) and have been the recipient of many invasions, in particular by fish species (see Copp et al. 2005; García-Berthou et al. 2005 for review). The success of nonindigenous fish has been widely studied and attributed to several factors including specific life history traits (Olden et al. 2006), phylogeny (Alcaraz et al. 2005) and environmental characteristics including abiotic factors or human use (Moyle & Light 1996; Alcaraz et al. 2005).

Environmental disturbance is known to greatly facilitate fish invasions (Moyle & Light 1996). Habitat modification and fragmentation (e.g., water pollution, construction of dams and water diversions) threaten native fish faunas while favouring the invasion of

J. Cucherousset¹, J.-M. Paillisson¹, A. Carpentier¹, M.-C. Eybert¹, J. D. Olden²

¹Biologie des Populations et de la Conservation, Université de Rennes 1, Rennes, France, ²School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA

Key words: black bullhead; habitat selection; invasive species; human management; Brière marsh; invasional meltdown

Julien Cucherousset, Equipe Biologie des Populations et de la Conservation, Université de Rennes 1, UMR 6553 Ecobio, Campus de Beaulieu, Bât 25, 1er Etage, Av. du Général Leclerc, 35042 Rennes Cedex, France; e-mail: julien.cucherousset@univ-rennes1.fr

Accepted for publication June 2, 2006

more tolerant non-native species (Marchetti et al. 2004). In the case of some artificial ecosystems, the decline of traditional human activities can impact local species diversity by favouring the loss and fragmentation of habitat (Wolter 2001). Studies of invasive fish species in artificial environments are particularly rare, although such species often dominate these areas that are now common throughout the landscape. It is the case for the black bullhead [Ameiurus melas (Rafinesque)], which was introduced into France from North America in 1871, and is now widespread in Europe (Wheeler 1978), notably with recent records in Spain and Portugal (Elvira 1984; Doadrio 2001; Gante & Santos 2002). Despite its classification as a 'species liable to cause biological disequilibrium' by the French legislation (article R. 232-3 Code rural, see Guevel 1997), few ecological studies have been conducted in its European non-native range (but see Boët 1980).

In the present article, we study the distribution and habitat selection of young-of-the-year (YOY) and adult *A. melas* in an artificial wetland in western

Cucherousset et al.

France. We use an integrative approach (Copp 1989; Poizat & Pont 1996) to examine the response of *A. melas* to habitat heterogeneity at two spatial scales: ditch network level and local microhabitat.

Material and methods

Study area

The Brière wetland flows in the estuary of the Loire River (northwest France, 47 °22'N, 02 °11'W) and represents a large freshwater marsh (9000 ha, Fig. 1). It is composed of a complex network of permanently flooded ditches within a patchwork of temporary habitats that flood in winter and progressively dry during spring and summer as a result of the rainfall regime and water level regulations. Since the last transgression (8000 BP), peat lands have developed and reed beds have progressively settled. Furthermore, the Brière marsh has rapidly changed during the last century as a result of a 3-year flood period during the Second World War and a continuous decrease of many agricultural activities. For instance, grazing decreased greatly (200 bovines and horses in the early 1980s vs. 3000 animals in the early 1900s) and peat extraction ceased completely in the 1950s, whereas 100,000 hl of peat were extracted in the 1880s. The combination of changes in human activities has favoured the development and expansion of reed beds mainly composed of the common reed [Phragmites australis (Cav.) Trin. ex Steud.] (Bernard & Rolland 1990). During the last century, the surface area covered by

Fig. 1. Map of the Brière marsh illustrating the ditch network and the matrix of temporary habitats (marsh meadow and reed bed). Location of permanent habitats sampled in August 2004 (\bigstar) and temporary habitats sampled in April 2004, where reed beds are represented as (\bigcirc) and marsh meadows as (\bigcirc).

reed beds increased from 2% to 85% of the total area, and marsh meadows, mainly composed of other Poaceae, decreased from 83% to 10%, the rest being covered by open waters (Bernard & Rolland 1990). These changes in human activities have played a significant role in the loss of native plant and animal species (Bernard & Rolland 1990; Eybert et al. 1998). At the same time, the Brière marsh has experienced several invasion events, and notably that of *A. melas*. Historical data indicate that *A. melas* was introduced in 1929 (Maillard 1972). It is now widely distributed throughout the entire wetland.

Fish sampling

Fish sampling was performed using an electrofishing (FEG 8000, EFKO, Leutkirch, Germany) apparatus (400-600 V and 6-10 A) with a 30-cm diameter anode. This sampling technique was chosen because it is the least destructive, most cost-effective and least biased (good efficiency for capturing all species and most life stages, Persat & Copp 1990). Fish were sampled in two periods of 2004, which were dictated by the pattern of floods, the seasonal configuration of habitats and safety precautions associated with electrofishing. All fish species inhabit the ditch web during drought (hereafter called permanent habitats), and some of them colonise reed beds and meadows (hereafter called temporary habitats) during the flooding season for the purposes of nursery, growing or spawning areas (Carpentier et al. 2004). These latter habitats (10 reed beds and 12 meadows) were sampled in April (Fig. 1) during the recession of water levels (average water depth of $51.0 \text{ cm} \pm 19.1 \text{ SD}$) and before spawning of most species. Given that the efficiency of electrofishing is limited in deeper waters, permanent habitats (25 ditches, Fig. 1) were sampled in August when the water level was low (average water depth of 52.4 cm \pm 29.0 SD).

Importantly, fish sampling was performed using the point abundance sampling (PAS) method (Nelva et al. 1979). This procedure involves throwing the anode from a boat to a distance of 5-10 m to limit fish escape and sampling at an interval of ≥ 50 m. Furthermore, the anode must be thrown in shallow waters to surprise the fish and minimise sampling bias (Persat & Copp 1990). Fish were collected with a net, identified to species, measured to the nearest mm [fork length for all species except total length for European eel Anguilla anguilla (Linnaeus)] and immediately released back into water. We followed recommendations of Copp & Garner (1995) concerning the number of PAS per site: $30.0 \text{ PAS} \pm 3.8$ per temporary habitat and 26 PAS \pm 4.1 per ditch. Each PAS was located using a Global Positioning System to perform spatial analyses. We used size-class distribution profiles to

Habitat use of artificial wetland by Ameiurus melas

distinguish YOY from adults for each fish species (Carpentier et al. 2004). A threshold of 70 mm was used to distinguish the two age classes in *A. melas*. This fish-size threshold agrees with the findings of Hanchin et al. (2002). Based on specific length-weight relationships defined *in situ* (Cucherousset, unpublished data), we calculated the relative biomass of each fish species.

Environmental characteristics of permanent habitats

We classified ditch size into two categories: those belonging to the primary network (main river or large ditches directly connected to the main river, mean width = 19.7 ± 6.0 m) and those belonging to the secondary network (ditches connected to the primary network level, mean width = 8.9 ± 2.6 m). A set of descriptors of the ditch network in the vicinity of each sampled ditch (ditch network variables) was extracted from a Geographical Information System (ArcView 3.2, Environmental Science Research Institute Inc., Redlands, CA, USA) using land cover and hydrographical network information. These variables represent the degree of connectivity of the ditch network. The number of ditches (ND), number of connections (crossroads between ditches, NC), length of ditches belonging to the primary (LDI) and the secondary (LDII) network levels and total length of ditches (TLD = LDI + LDII) were calculated for each ditch at different radius values (buffer area, calculated at the central part of each site): 200, 400, 600, 800 and 1000 m. This range of radius values corresponds to the mean linear home range values (0.5-2.1 km, Sakaris et al. 2005) for the closely related species, brown bullhead [Ameiurus nebulosus (Leseur)].

Four fine-scale (microhabitat) variables were measured at each PAS during fish sampling. Water depth (WD) was transformed into two classes (0–50 cm and >51 cm, after inspection of the distribution frequency of values), substrate (SU) was classified into two types (peat, not peat), vegetation cover (VC) was visually estimated as the percentage of area covered by plants and transformed into two classes (absence or presence) for analyses and adjacent habitat type was categorised as reed beds or marsh meadows.

Data analysis

The PAS from each ditch were analysed collectively at the ditch network scale and punctually at the microhabitat scale (Copp 1989). At the ditch network level, we conducted a series of preliminary analyses to quantify the degree of multicollinearity among continuous variables [length of ditches were $\ln(x + 1)$ transformed]. Next, a principal components analysis was performed on the resulting independent variables

Cucherousset et al.

(ND_200, TLD_200, ND_600, TLD_600, 77.5% of the variation in the ditch network descriptors explained by the first two axes) to classify ditches into two groups highlighted by the significant contribution of NC_600 [inertia analysis procedure (Legendre & Legendre 1998), see values in Table 1]. The resulting variable was called 'ditch connectivity' (Table 1). At the same time, we analysed the relationships between three fish descriptors, i.e., abundance (catch per unit effort, CPUE = number of individuals/PAS), relative abundance (%) and relative biomass (%), for YOY and adults of *A. melas* using linear regression analysis.

The relationships between the abundance of each size-class of *A. melas* (dependent variable) and the habitat descriptors at the two spatial scales (independent variables) were analysed separately using general linear models. In these models, a forward selection procedure was applied to the variables with a probability of entry of *F* of <0.15 and to exclude of >0.20. We also tested for differences in the abundance of

Table 1. Summary statistics for the final set of habitat variables used to model *Ameiurus melas* abundance. Reported values are proportions (%) for the categories of the ditch network and microhabitat variables.

Habitat variables	Code	Categories (relative proportion, %)					
Ditch network scale ($N = 25$ ditches)							
Ditch size	DS	Primary (60.4)	Secondary (39.6)				
Ditch connectivity†	DC	Low (68)	High (32.0)				
Microhabitat scale ($N = 646$ PAS)							
Water depth	WD	0-50 cm (55.7)	>51 cm (47.3)				
Substrate	SU	Peat (67.6)	Not peat (32.4)				
Vegetation cover	VC	Absence (63.6)	Presence (36.4)				
Adjacent habitat type	AH	Reed bed (46.1)	Marsh meadow (53.9				

†Ditch connectivity results from a PCA on independent continuous ditch network variables (see the Data Analysis section for more details). The two modalities are mainly derived from NC_600 values (inertia analysis procedure); low: \leq 4 ditches in a radius of 600 m around the sampled ditches, high: >4 ditches.

A. melas (CPUE of YOY and adults combined) and for other species in the assemblage (species CPUE and total richness) in the two temporary habitat types (marsh meadows vs. reed beds). Assumptions of normality and homoscedasticity were tested using the Kolmogorov–Smirnov/Lilliefors test and Levene's test, respectively, before performing a *t*-test. When deviations from normality were detected, nonparametric Mann–Whitney tests were performed. The statistical analyses were performed using STATISTICA (StatSoft Inc., Tulsa, OK, USA) and a critical alpha level of 0.05 was used for all tests.

Results

Distributional patterns of *Ameiurus melas* in permanent habitats

In total, 11,921 individuals (9650 adults and 2271 YOY) belonging to 17 species were captured in permanent habitats (646 PAS), including 5334 individuals of A. melas (4524 adults and 810 YOY) (Table 2). Ameiurus melas largely dominated the fish assemblage in terms of abundance, relative abundance and relative biomass for both adult and YOY populations followed by bream spp. [silver bream Blicca bjoerkna (Linnaeus) and common bream Abramis brama (Linnaeus)], roach [Rutilus rutilus (Linnaeus)], rudd [Scardinius erythrophthalmus (Linnaeus)], mosquitofish (Gambusia holbrooki Girard), pumpkinseed [Lepomis gibbosus (Linnaeus)] and A. anguilla (Table 2). On average, YOY and adults of A. melas accounted for 30.3% and 33.8% of the relative abundance and 20.6% and 35.2% of the relative biomass of the fish assemblage, respectively. However, adult abundance varied greatly between sites

Table 2. Details on fish species sampled in the 25 permanent habitats in the Brière marsh: origin (introduced vs. native), total number, mean (SD) abundance (CPUE), relative abundance (%) and relative biomass (%) for adult and YOY.

		Ν		Abundance (CPUE)		Relative abundance (%)		Relative biomass (%)	
Species	Origin†	Adults	YOY	Adult	YOY	Adult	YOY	Adult	YOY
Black bullhead, <i>Ameiurus melas</i> (Rafinesque)	1	4524	810	7.35 (8.7)	1.19 (0.9)	33.81 (24.4)	30.30 (21.9)	35.20 (24.3)	20.59 (15.9)
Silver bream, Blicca bjoerkna (Linnaeus)	Ν	2015	696	3.05 (2.8)	0.92 (0.7)	22.76 (17.7)	23.57 (17.4)	21.72 (15.2)	19.66 (15.6)
Common bream, Abramis brama (Linnaeus) ‡									
Roach, Rutilus rutilus (Linnaeus)	Ν	1021	393	1.61 (1.3)	0.79 (0.7)	14.82 (11.1)	19.64 (15.3)	12.36 (10.7)	17.09 (13.9)
Rudd, <i>Scardinius erythrophthalmus</i> (Linnaeus)	Ν	589	130	0.94 (0.9)	0.26 (0.3)	7.15 (5.5)	6.73 (8.0)	4.39 (3.5)	2.59 (3.3)
Mosquitofish, Gambusia holbrooki Girard	1	675	§	1.10 (1.3)	§	7.38 (5.8)	§	0.12 (0.1)	§
Pumpkinseed, Lepomis gibbosus (Linnaeus)	1	538	49	0.85 (0.7)	0.19 (0.3)	9.97 (13.3)	4.78 (7.3)	6.19 (9.2)	2.01 (3.2)
European eel, Anguilla anguilla (Linnaeus)	Ν	240	123	0.38 (0.3)	0.46 (0.5)	3.50 (3.7)	11.83 (13.5)	11.78 (11.4)	25.23 (23.4)
Others species¶	N–I	48	70	0.07 (0.1)	0.13 (0.2)	0.61 (1.1)	3.15 (5.1)	8.24 (11.4)	12.92 (15.5)

†N for native and I for introduced based on Keith & Allardi (2001).

#Blicca bjoerkna and Abramis brama were grouped together because juveniles were not reliably identifiable in the field.

§All Gambusia holbrooki were grouped as adult.

¶Others species (mean relative abundance <1%) were Prussian carp *Carassius gibelio* (Bloch) (I), European perch *Perca fluviatilis* Linnaeus (N), northern pike *Esox lucius* Linnaeus (N), common carp *Cyprinus carpio* Linnaeus (I), tench *Tinca tinca* (Linnaeus) (N), largemouth bass *Micropterus salmoides* (Lacepède) (I), bitterling *Rhodeus amarus* (Bloch) (N), three-spined stickleback *Gasterosteus aculeatus* Linnaeus (N) and pikeperch *Sander lucioperca* (Linnaeus) (I).

(range 1.1–84.2%). Because fish abundance (CPUE) was highly correlated with relative abundance (%) and relative biomass (%) for both adults (linear regression, $R^2 = 0.91$, P < 0.001 and $R^2 = 0.81$, P = 0.002, respectively) and YOY (linear regression, $R^2 = 0.99$, P < 0.001 and $R^2 = 0.53$, P = 0.042, respectively), we used abundance (CPUE) values to investigate the relationships between *A. melas* abundance and the suite of environmental variables.

Associations between *Ameiurus melas* and environmental characteristics of permanent habitats

At the ditch network level, we found no significant relationship between abundance of YOY and adults and the two habitat descriptors, although *A. melas* abundance was marginally lower in large ditches (Table 3). At the microhabitat scale, YOY and adults were more abundant in locations with peat substrate (Table 4; Fig. 2). We found a number of subtle differences for YOY and adults. Whereas abundance of adults increased with the presence of adjacent reed beds (Fig. 2), this relationship was not observed for YOY (Table 4). YOY abundance was negatively related to water depth (Table 4; Fig. 2), whereas adult abundance was not (Table 4). The VC \times WD and WD \times SU interactions were significant for adults.

Use of temporary habitats by *Ameiurus melas* and the fish assemblage

In total, we captured 411 individuals (131 *A. melas*) on the temporary habitats (659 PAS), belonging to 13 species. We found no difference in species richness between the two habitat types (marsh meadows vs. reed beds, *t*-test, pooled variance t = -0.488, d.f. = 20, P > 0.05), whereas more fish (total abundance) were captured in reed beds (Mann–Whitney U = 24.0, P = 0.018). Abundance (CPUE) of the fish assemblage without *A. melas* was similar between the two types of temporary habitats (Mann–Whitney

Table 3. Results of the general linear model for the abundance (CPUE) of young-of-the-year and adult *Ameiurus melas* [In(x + 1) transformed values] performed at the ditch network level (N = 25 ditches).

Habitat variable	MS	d.f.	F	Р	β			
Dependent variable								
Abundance of a	dult <i>A. mela</i>	s						
DS	0.639	1	3.189	0.089	-0.191			
DC	0.007	1	0.034	0.855	-0.019			
DS imes DC	0.059	1	0.295	0.593	-0.058			
Abundance of young-of-the-year A. melas								
DS	0.268	1	4.092	0.056	-0.124			
DC	0.024	1	0.372	0.549	-0.037			
$\text{DS}\times\text{DC}$	0.101	1	1.547	0.227	0.076			

See Table 1 for details on habitat variables.

Habitat use of artificial wetland by Ameiurus melas

Table 4. Results of the general linear model for the abundance (CPUE) of young-of-the-year and adult *Ameiurus melas* [In(x + 1) transformed values] performed at the microhabitat scale in the 25 sampled ditches (N = 646 PAS).

Habitat variable	MS	d.f.	F	Р	β
Dependent variable	9				
Abundance of a	dult <i>A. melas</i>	;			
AH	4.81	1	19.02	<0.001	-0.115
VC	0.02	1	0.09	0.768	0.007
WD	0.40	1	1.59	0.208	-0.029
SU	10.28	1	40.66	<0.001	0.157
$AH \times VC$	0.12	1	0.49	0.483	0.016
AH imes WD	0.07	1	0.28	0.597	-0.011
AH imes SU	0.04	1	0.18	0.675	-0.010
VC imes WD	1.49	1	5.88	0.016	0.056
VC imes SU	0.09	1	0.36	0.548	-0.015
WD imes SU	2.17	1	8.57	0.004	-0.069
Abundance of y	oung-of-the-y	/ear A. m	nelas		
AH	0.064	1	0.88	0.350	-0.013
VC	0.083	1	1.13	0.287	-0.014
WD	0.721	1	9.85	0.002	0.038
SU	0.807	1	11.02	0.001	0.044
AH imes VC	0.016	1	0.22	0.642	-0.005
AH imes WD	0.105	1	1.44	0.231	-0.014
$AH \times SU$	0.076	1	1.03	0.310	-0.013
$\rm VC imes WD$	0.214	1	2.92	0.088	-0.021
$\rm VC \times SU$	0.057	1	0.78	0.378	-0.011
$WD\timesSU$	0.274	1	3.74	0.053	0.024

Significant values are in bold. See Table 1 for details on environmental variables.

U = 38.5, P > 0.05), but abundance of *A. melas* was significantly higher in reed beds (Mann–Whitney U = 20.5, P = 0.008) when compared with marsh meadows.

Discussion

In the present study, we found that the contemporary fish assemblage of the Brière marsh is largely dominated by the invasive A. melas. Our results provide strong evidence that A. melas prefer reed bed habitats, a habitat type that has rapidly invaded the marsh because of the decline of agricultural practices in this artificial ecosystem (Bernard & Rolland 1990). This suggests that A. melas may have benefited from the expansion of reed beds in view of (i) the positive relationships found between its abundance and the presence of adjacent reed beds, (ii) the selection of peat substratum in small ditches and (iii) the preferential use of reed beds (vs. marsh meadows) during the flooding period. Although some differences were found between YOY and adult individuals as a consequence of the ontogenetic shift in habitat use from YOY (pelagic habits) to adult (benthic habits) life stages (e.g., Boët 2001). In general, YOY and adult abundance in permanent habitats was both positively correlated with trends derived from the development of reed beds. Indeed, reed beds are highly productive aquatic habitats. They likely affect habitat structure

Fig. 2. Adult and young-of-the-year *Ameiurus melas* abundance [mean CPUE \pm SD, ln(x + 1) transformation] in permanent habitats in relation to microhabitat variables (N = 646 PAS): adjacent habitat, substrate and water depth. Statistical results are detailed in Table 4. Note different scales on the *y*-axes.

and food resources because of the large amounts of detritus produced, which can remain standing for one or more years in the litter (see details in Mason & Bryant 1975). Ameiurus melas may preferentially occupy reed beds during the flooding season for trophic cues, notably the presence of a specific invertebrate assemblage associated with reed bed litter (Bedford & Powell 2005). Moreover, A. melas is a species with limnophilic habits (Gante & Santos 2002) and is tolerant to the harsh conditions imposed in many wetlands; therefore, it is likely to benefit from such changes in the abiotic environment. In the same way, we found that A. melas illustrates a strong affinity to reed beds as temporary flooded habitats. Furthermore, A. melas abundance increases when decreasing water depth (Brown et al. 1999) and the production of a large amount of litter by the reed beds might favour A. melas by limiting water depth.

While we are unsure of the specific mechanisms that have led to the invasion success of *A. melas*, it is likely that the presence of other invasive animals has played a facilitative role. For example, we believe that the recent introduction of the invasive red swamp cravfish [Procambarus clarkii (Girard)] in the Brière marsh may have favoured the establishment of A. melas by modifying the physical characteristics of the habitat. In fact, P. clarkii is known to impact substrate composition (Rodríguez et al. 2005), which may favour limnophilic species like A. melas that depend on specific substrate conditions for spawning and nest construction (Braig & Johnson 2003). Moreover, P. clarkii might represent a more profitable prey item for A. melas compared with smaller invertebrates. Empirical evidence for such patterns would provide support for the invasional meltdown hypothesis of Simberloff & Von Holle (1999), whereby the presence of particular invasive species facilitates the subsequent establishment of other nonindigenous species. Future research addressing these questions is warranted.

During the last 10 years, an active management plan has been undertaken in the Brière wetland to restore marsh meadows through clear-cutting operation and promoting the grazing of reed beds. These restoration activities have already positively affected the density and species richness of waterfowl assemblage (Eybert et al. 1998). Because physical habitat can mediate biotic resistance to an invader and control invasion success and subsequent impacts (Bvers 2002), it would be of interest to investigate whether the restoration of marsh meadows could increase the resistance of this ecosystem to future spread of A. melas. Furthermore, the study of the functional use of these temporary flooded habitats and its seasonal variability (Crain et al. 2004) is needed to better evaluate their effects on fish assemblage composition. At the very least, we cite the need to increase our understanding of the autoecology of A. melas to better understand the ecological impacts of introduced freshwater fish in artificial environments that are now prevalent across the landscape.

Acknowledgements

We are grateful to E. Feunteun and three anonymous reviewers for the valuable comments on an earlier draft. We thank the Parc naturel régional de Brière for logistic, the PnrB, FEDER, DIREN, Région Pays de la Loire and Agence de l'Eau from Loire-Bretagne for financial support and particularly J.-P. Damien for assistance during field work. We thank B. Boisteau for his help on GIS analyses.

References

- Alcaraz, C., Vila-Gispert, A. & García-Berthou, E. 2005. Profiling invasive fish species: the importance of phylogeny and human use. Diversity and Distributions 11: 289–298.
- Bedford, A.P. & Powell, I. 2005. Long-term changes in the invertebrates associated with the litter of *Phragmites australis* in a managed reedbed. Hydrobiologia 549: 267–285.
- Bernard, J.Y. & Rolland, R. 1990. Restoration of the "Grande Brière Mottière" marsh overhauling's project of the stretches of water. Bulletin d'Ecologie 21: 15–19.
- Boët, P. 1980. L'alimentation du poisson-chat (*Ictalurus melas* Raf.) dans le lac de Créteil. Annales de Limnologie 16: 255– 270.
- Boët, P. 2001. Le Poisson-chat *Ameiurus melas* (Rafinesque, 1820). In: Keith, P. & Allardi, J., eds. Atlas des Poisons d'Eau Douce de France, Vol. 47. Paris: Patrimoines naturels, MNHN, pp. 222–223.
- Braig, E.C. & Johnson, D.L. 2003. Impact of black bullhead (*Ameiurus melas*) on turbidity in a diked wetland. Hydrobiologia 490: 11–21.
- Brown, M.L., Willis, D.W. & Blackwell, B.G. 1999. Physiochemical and biological influences on black bullhead populations in eastern South Dakota glacial lakes. Journal of Freshwater Ecology 14: 47–60.
- Byers, J.E. 2002. Physical habitat attribute mediates biotic resistance to non-indigenous species invasion. Oecologia 130: 146–156.
- Carpentier, A., Paillisson, J.-M., Feunteun, E. & Marion, L. 2004. Fish community structure in temporary lowland flooded grasslands. Bulletin Français de la Pêche et de la Pisciculture 375: 1–14.

Habitat use of artificial wetland by Ameiurus melas

- Copp, G.H. 1989. The habitat diversity and fish reproductive function of floodplain ecosystems. Environmental Biology of Fishes 26: 1–27.
- Copp, G.H. & Garner, P. 1995. Evaluating microhabitat use of fish larvae and juveniles with point abundance sampling. Folia Zoologica 44: 145–158.
- Copp, G.H., Bianco, P.G., Bogutskaya, N.G. et al. 2005. To be, or not to be, a non-native freshwater fish? Journal of Applied Ichthyology 21: 242–262.
- Crain, P.K., Whitener, K. & Moyle, P.B. 2004. Use of restored central California floodplain by larvae of native and alien fishes. American Fisheries Society Symposium 39: 125–140.
- Doadrio, I. 2001. Atlas y Libro Rojo de los Peces Continentales de España. Madrid: Dirección General de Conservación de la Naturaleza, 364 pp.
- Elvira, B. 1984. First records of the North American catfish *Ictalurus melas* (Rafinesque, 1920) (Pisces, Ictaluridae) in Spanish waters. Cybium 8: 96–98.
- Eybert, M.-C., Bernard, J.-Y., Constant, P., Feunteun, E., Hédin, J. & Questiau, S. 1998. Réhabilitation des prairies inondables dans les marais briérons: évolution de la flore, des poissons et des oiseaux. Gibier et Faune sauvage 15: 999–1016.
- Gante, H.F. & Santos, C.D. 2002. First records of the North American catfish *Ameiurus melas* in Portugal. Journal of Fish Biology 61: 1643–1646.
- García-Berthou, E., Alcaraz, C., Pou-Rovira, Q., Zamora, L., Coenders, G. & Feo, C. 2005. Introduction pathways and establishments rates of invasive aquatic species in Europe. Canadian Journal of Fisheries and Aquatic Sciences 62: 453– 463.
- Guevel, B. 1997. La loi pêche (Code Rural) et l'introduction des espèces piscicoles. Bulletin Français de le Pêche et de la Pisciculture 344/345: 43–51.
- Hanchin, P.A., Willis, D.W. & Hubers, M.J. 2002. Black bullhead growth in South Dakota waters: limnological and community influences. Journal of Freshwater Ecology 17: 65–73.
- Keith, P. & Allardi, J. 2001. Atlas des Poisons d'Eau Douce de France. Paris: Patrimoines naturels, MNHN, 387 pp.
- Kolar, C.S. & Lodge, D.M. 2001. Progress in invasion biology: predicting invaders. Trends in Ecology and Evolution 16: 199–204.
- Lee, C.E. 2002. Evolutionary genetics of invasive species. Trends in Ecology and Evolution 17: 386–391.
- Legendre, P. & Legendre, L. 1998. Numerical Ecology, 2nd English edn. Amsterdam: Elsevier, 853 pp.
- Maillard, Y. 1972. Poissons et problèmes piscicoles du bassin du Brivet. Penn ar Bed 71: 386–399.
- Marchetti, M.P., Moyle, P.B. & Levine, R. 2004. Alien fishes in California watersheds: characteristics of successful and failed invaders. Ecological Applications 14: 587–596.
- Mason, C.F. & Bryant, R.J. 1975. Production, nutrient content and decomposition of *Phragmites communis* Trin and *Typha latifolia* L. The Journal of Ecology 63: 71–95.
- Moyle, P.B. & Light, T. 1996. Biological invasions of fresh water: empirical rules and assembly theory. Biological Conservation 78: 149–161.
- Nelva, A., Persat, H. & Chessel, D. 1979. Une nouvelle méthode d'étude des peuplements ichthyologiques dans les grands cours d'eau par échantillonnage ponctuelle d'abon-

Cucherousset et al.

dance. Comptes Rendu de l'Académie des Sciences 289: 1295-1298.

- Oberdorff, T., Pont, D., Hugueny, B. & Porcher, J.-P. 2002. Development and validation of a fish-based index for the assessment of 'river health' in France. Freshwater Biology 47: 1720–1734.
- Olden, J.D., Poff, N.L. & Bestgen, K.R. 2006. Life-history strategies predict fish invasions and extirpations in the Colorado River Basin. Ecological Monographs 76: 25–40.
- Persat, H. & Copp, G.H. 1990. Electric fishing and point abundance sampling for the ichthyology of large rivers. In: Cowx, I., ed. Development in Electric Fishing. Oxford: Fishing New Books, Blackwell Scientific Publications, pp. 197–209.
- Pimentel, D. 2005. Aquatic nuisance species in the New York State Canal and Hudson River systems and the Great Lakes Basin: an economic and environmental assessment. Environmental Management 35: 692–701.
- Poizat, G. & Pont, D. 1996. Multi-scale approach to specieshabitat relationships: juvenile fish in a large river section. Freshwater Biology 36: 611–622.

- Rodríguez, C.F., Bécares, E., Fernández-Aláez, M. & Fernández-Aláez, C. 2005. Loss of diversity and degradation of wetlands as a result of introducing exotic crayfish. Biological Invasions 7: 75–85.
- Sakaris, P.C., Jesien, R. & Pinkney, A.E. 2005. Brown bullhead as an indicator species: seasonal movement patterns and home ranges within the Anacostia River, Washington, DC. Transactions of the American Fisheries Society 134: 1262–1270.
- Simberloff, D. & Von Holle, B. 1999. Positive interactions of nonindigenous species: invasional meltdown? Biological Invasions 1: 21–32.
- Vitousek, P.M., Mooney, H.A., Lubchenco, J. & Melillo, J.M. 1997. Human domination of Earth's ecosystems. Science (Washington, DC) 277: 494–499.
- Wheeler, A. 1978. *Ictalurus melas* (Rafinesque, 1820) and *I. nebulosus* (Lesueur, 1819): the North American catfishes in Europe. Journal of Fish Biology 12: 435–439.
- Wolter, C. 2001. Conservation of fish species diversity in navigable waterways. Landscape and Urban Planning 53: 135–144.